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Abstract 

There are three main problems encountered when applying linear regression 

models to geophysical time series, namely the problems of: model significance, 

model hindcast skill and model forecast skill. In this note we solve the first 

two problems by the systematic introduction of various hindcast performance indexes 

of the linear regression model, such as canonic skill Q, classic skill S, and 

ineptness I, and by deriving their probability density functions on the assumption 

of gaussian noise governing the residual vectors. The notion of signal to noise 

ratio A is introduced into the analyses of the problems of significance and skill, 

and it is shown how A, as a parameter in the probability density function for 

Q, S, and I, can be used to generate confidence intervals for its estimation. As 

a result, by means of A, it is possible to unify the problems of model significance 

and model hindcast skill in a way that suggests various basic strategies to 

maximize model hindcast skill subject to the constraint that a model be significant. 

In this way a framework for linear regression hindcast theory is provided on which 

the solution for the third main problem may eventually be based. 
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MODEL SKILL AND MODEL SIGNIFICANCE 

IN LINEAR REGRESSION HINDCASTS 

by 

Rudolph W. Preisendorfer 

l. Introduction 

From the point of view of a physical oceanographer or a meteorologist, the 

concept of linear regression provides an interesting mixture of dynamics and 

statistics in the sense that the usual form of a linear regression equation, 

namely 

( l. l ) 

holds simultaneously within it the algebraic essence of a dynamical law: y_ = ! f, 

and a random perturbation� of that law. Thus, as we shall briefly illustrate 

below, we may envision the matrix X as embodying a generalized force and I as the 

transfer function that converts X into an observable field y_ as seen through an 

intermediate haze of noise £. In such a dynamical context,! and� may rigorously 

take on a great variety of forms, ranging from simple ohm's law quantities in 

linear electric circuits, to the appropriate parts of solutions of linear wave 

equations arising in oceanography and meteorology. 

In the present note we shall prepare a framework for the general solutions 

of two of the three main problems arising when (l .1) is directed toward the 

description of linear dynamical processes in random settings. In practice these 

three problems arise in ways which we shall now briefly describe. 
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A. Estimating The Model Parameter f 

The n x 1 vector y_ in (1.1) is imagined to be a set of n observations of a field 

which arises through the action of a set of driving forces situated at p locations 

in space, at each of which n observations of the force are made. Let ' x. ' denote
-J 

the n x vector summarizing n observations of the forcing field made at the jth 

point. Then write!= [� � ... ], so that! is an n x p matrix. For example 1 2 �
the � s can be 2_ time series of sea level atmospheric pressure, and y_ can be thej  

corresponding time series of sea surface temperatures at a point. By means of a 

least squares procedure, to be reviewed below, we can estimate the components of 

the vector f, using the observed driving field! and observed resultant field y_; 

thus if f, is the desired estimate off, we find: 

( 1 . 2) 

Here ' T ' denotes matrix transpose. If there is no noise, i.e., if in (1 .1), 

£ = 0, then on substitution of y_ 
A 

=! f into (1 .2), we would find f =f· In this 

case, the least square estimation technique allows us to determine exactly the 

essential physical parameter f of the linear regression model (1 .1) in the 

absence of noise. 

When noise is present in (1 .1), then the solution (1.2) for 
A 

s, on 

substitution of (1 .1) for y_, becomes 

( 1. 3) 

lNow the physical parameter vector f is masked by the noise vector (�T!f!T£· 

One no longer is certain that f really exists as a nonzero vector. Indeed, 

setting f = 0 in (1 .1) and (1 .3) suggests that what we could observe is simply 
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pure noise; and for any finite sample of size n, no statistical test can absolutely 

assure us that the observation y_ is not pure noise. 

B. Problem of Model Significance 

This brings us to the first main problem arising in the use of (1.1) to 

study physical systems in nature: how does one decide, from the measurements '1{, X 

and knowledge of the statistics of£, that ff O? This is the problem of model 

significance. The term 'significance' is used to indicate that we cannot decide 

with certainty that f; 0, but only to indicate with some stated measure of 

confidence (e.g., on the 95% level) thats f 0. If we find that Sf 0, then we 

can view y_ =!!,with some measure of confidence, as a non trivial (i.e., a not 

completely noisy) indicator of a law of nature worthy of closer scrutiny. For 

this is our principal attitude toward (1.1 ): namely that (1.1) is merely a 

preliminary indicator of a possibly significant mode of dynamic behavior of a 

portion of (say) the atmosphere/hydrosphere fluid system. This attitude does not 

rule out the possibility that the relevant law itself contains random structure; 

nor perhaps that the most we could ever know about the system would be certain 

simple refinements of (1.1) itself.* 

C. Model Skills 

It is quite possible that an estimated model y_ 
A 

=!!
A 

 of the law y_ =! f 

is significant in the above sense, but that (because of an overly-dominant£ 

term, e.g.) it may be of little value in describing the temporal variations of the 

field y_, i.e., that;,_=! sis not very skillfultin approximating y_ for the given 

field X. A quantitative measure of such skill is the ratio 

* The bulk formulas for the thermodynamic processes at the air/sea surface are 
currently of this kind; and some of the various parameterizations of physical
processes incorporated in the currently most advanced general circulation 
models of the air and sea are also of this kind. 

t This will be illustrated in §13B, C. 



4 §1 

11�11 2 I It.I I2 
Q ==  -- --

A
( l . 4)

I ly
 

-xs11 2 I lt.-YI 1 2

where = I 1�112 x 2 + ... +x 2, for any n dimensional vector�= [x , , ... , x T
�

 
nJ1 n 1 2

('T' denotes transpose; all vectors are written as single columns of scalars). 

hus Q is the ratio of the square of the length of (i.e., y
A A A 

 2 y + 2T ... + y ) to1 n 

the square of the length of the residual vector y-y, the vector representing the 

error of the model in its attempt to describe y. Clearly, the greater Q the better 

the model. Q is the canonic skill of the model. 

Another measure of model fit is given by 

A 

11�112 I It.I I2 

s = = ( l . 5) 
I It.I I 2 I It.I I 2

which is the ratio of the est1mator's square to the estimand's square. Clearly, 

the greater S, the better the model. Sis the classic skill of the model. 

Still another index of the performance of the model y =�in describing 

y = XS is the ratio 

A 

I ly-�I I2 I IY-YI1 2 

R = = ( l . 6) 
I It.I I 2 I It.I I 2

The smaller R, the better the model. R is the residual unskill index. As we 

shall see below, R and Sare simply related by: 

R + S = l , (l. 7) 

using an n dimensional form of Pythagoras' theorem. From this we see that either 

R or Sis sufficient to characterize the performance of the model. Further, one 

can readily see that: 



Q = S/R = S/(1-S) = (1-R)/R ( l .8) 

D. Problem of Model Hindcast Skill 

All three indexes are closely tied together in their abilities to rate the 
A A 

performance of y_ = Xs in describing y_ = X_§_. For a chosen sample size n, we can 

watch how that performance is affected by varying the single remaining parameter 

in (1 .1) available to us, namely the number p of time series used to describe y_. 

Thus the jth reading of y, namely y is given by the jth component of (1 .l ): j 

§1 5 

j = l, ... , n ( l . 9) 

Our options are limited by observing that: the driving forces x are given by jk 

nature; the observations y are measured in situ; the noise E is inevitable. j j 

With these as given, to improve our skill (to make Q, S greater or R smaller) it is 

left to us only to decide on which time series x. to measure and how many there 
-J

will be included in (1.1). It has been the experience of many practitioners of 

linear regression modeling over the years that an unrestrained growth in the number 

p of predictors x. (holding n momentarily fixed) results in successively higher 
-J 

skill values Q, S (or lower residual unskill R) while simultaneously there results 

a decreasing m9del significance (i.e., one must drop the level of confidence in 

order to continue to assert model significance). It has taken the last several 

years of work by climate researchers studying the air/sea interaction problem 

using linear regression theory to alloH this insight about skill/significance 

dependence on p to be so succinctly stated. (cf. Barnett and Hassel,nann (1979), 

Davis (1978)). In this way we come to the statement of the second main problem of 

linear regression: how does one choose the location and number of the predictor 

time series in ]!_ so as to maximize a given skill index subject to the constr•aint 

that the associated model be significant? This is the problem of model hindcast skill. 
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E. Problem of Model Forecast Skill 

The word 'hindcast' in 'the problem of model hindcast skill' emphasizes 

that we are momentarily concerned only about how well the model may be cast on 

the past; i.e., how well past observations y_ are fitted by!§_. There is no 

automatic guarantee that a significant, skillful hindcast of (1.1) over a 

particular data stretch X will continue to be skillful when the estimated f is 

used on a fresh stretch of time series beyond that of X. In this way we come to 

the third and final main problem of linear regression studies of physical processes: 

how does one choose the location and numbevof the predictor time series so as to 

maximize a given forecast skill index, subject to the constraint that the associated 

model be significant in the hindcast mode? 

F. The Problems Studied in this Note and a Summary of Results 

We shall lay the groundwork for the full statistical solution of the model 

significance and model hindcast skill problems defined above. In this way the 

advances of Lorenz, Davis, Barnett and Hasselmann can be consolidated and possibly 

extended. The third problem, that of model forecast skill, will not be considered 

here. In our studies below, we shall be motivated in particular to clarify the 

pioneering work in this area by Lorenz (1956), and shall be guided by the recent 

advances on the two problems by Barnett and Hasselmann (1979), and by Davis (1978). 

The work of Barnett and Hasselmann, in particular, has shown the importance of 

including the probability density function of the difference f-f in their analysis 

of the model significance problem. Inspired by their example, the work below 

turns to those parts of the work of Davis and Lorenz wherein the introduction of 

the probability density function (pdf) of the classic skill index S would 

correspondingly clarify their discussions of model hindcast skill. In the setting 

Tof homogeneous noise, i.e., where <� > = a2l, it will turn out that, by introduc­

ing the notion of the signal to noise ratio A = I l!§..1 j 2 /cr2 into the settings of the 
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skill and significance problems, we shall be able to unify the various approaches 

of Davis, Barnett and Hasselmann to these problems, so that the solution of each 

problem may cast light on the solution of the other. Specifically, the signal 

to noise ratio A will be incorporated into the probability density functions for­

Q, S, R (and their three relatives) along with the sample size n and predictor 

number p. In this way we will be able to watch the simultaneous, coupled effects 

on model significance and model hindcast skill as p, n, and A are varied. Some 

further coro1laries of the presence of A in the probability density functions for 

Q, S, R in the linear regression theory are: a unified geometric formulation of 

the hindcast performance indexes (the three skills Q, S, C, and the three unskills 

R, I, U); 'skeleton' Monte Carlo representations of the six performance indexes as 

random variables which, with the above geometric formulation, considerably clarify 

the p, n, A behavior of these indexes; the derivation of an unbiased estimator of 

A; a small-sample theory of the confidence limits of A, based on the pdf of any of 

the six performance indexes; a large-sample theory of the confidence limits of A, 

based on a form of the central limit theorem; and exact knowledge of the population 

means and variances of the performance indexes. The work concludes with two 

appendixes, the first giving a self-contained derivation of the general forms of 

the pdfs for the performance indexes, and the second appendix which gives finite­

term integrals of the pdfs, yielding efficient numerical procedures to find the 

Y�, 1-½a significance levels for each performance index. Also appended are 

figures and tables describing in a preliminary way some of the n, p, A-behaviors 

of the performance indexes, thereby yielding information by which a user of linear 

regression representations of physical processes can deepen his understanding of 

those representations. 

2. Dynamical Aspects of Regression Equations 

Our introductory remarks referred to the dynamical laws inherent in the 
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form (1.1). It is of considerable help when visualizing the physical applications 

of (1 .1), particularly in geophysical settings, to see the� vector as a transfer 

function of some sort, and the X matrix as time series of variously located driver 

forces giving rise to the observed field y_. Some insight into the origins of.£ are 

also forthcoming. In this section we will sketch the main stages of a derivation 

leading to (1.1) starting from a two-dimensional linear partial differential 

equation. The reader may imagine it describing damped long-wave motion in a fluid 

basin or equivalently, linearized atmospheric waves over oceanic or land regions. 

The essential ideas of the reduction to linear regression form are, of course, 

independent of the specific physical interpretation. The equation (2.1) below 

merely serves to draw our attention to certain general dynamical aspects inherent 

in the form and application of (1.1). 

A. Wave Equation 

We start with the two dimensional wave equation governing the field 

n(�,t) where z = (x,y), over some region R, 

- c2(n +n ) = f* ( 2. 1 ) ntt+ ant+ bn xx yy 

Here a, b are constants, describing dissipative mechanisms in the fluid (or general 

medium) of interest. c is the speed of propagation of undamped waves. f* is the 

driving force. For example, if n(�,t) is wave elevation at point � at time t, 

f*(z,t) may be the sea level pressure at the same space time point. 

B. Solution of Wave Equation 

We are interested in a solution of (2.1) subject to the initial conditions 



and boundary conditions 

where n is a derivative normal to the fluid boundary at point _Q. = (x ,y ) at eachn b b ' 
b of the boundary B of the region R over which (2.1) is to be solved. 

It can be shown that under the preceding conditions there exist two Greens' 

functions G, H such that for every� in R, and t � 0, 

(2.2) 

where 

k=l 
[cosykt + yk 

sinykt]uk(�• )uk(�) at 
00 

EH(�• ,�,t) = e-a 

§2 9 

and where 

The Ak are eigenvalues of the spatial Helmholtz equation associated with (2.1) and 

the given boundary conditions. Moreover, the functions uk(�) are the corresponding 

eigenfunctions of the spatial Helmholtz equation, and have the properties 
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and 

00 

C. Discretized Solution of the Wave Equation Diagnostic Mode 

We turn now to the simplification of (2.2) with an eye toward attaining the 

associated regression equation. The first term in (2.2) indicates the way the 

driving force f*(�• ,t') makes itself felt at �,t through the transfer function 

G(�• ,�,t-t'), which corrmunicates the cause at �• ,t', to the effect at �,t. It is 

the linearity of the process and the constancy of the coefficients a,b,c in (2.1) 

that allows G to depend only on t-t'. The second term in (2.2) shows how the 

initial state of the fluid system is felt at time t later. As time t grows, the 

exponential terms in G and H tend to make the system forget its original state, 

so that in the long run, i.e., for t greater than some , , (2.2) 
0

can be shortened
 

to 

n(�, t) 
= J J f

*
(z'-

,t')G(z'-
, ,t-tz- ')dt'dA(z

-') (2.3) 
R o 

In the diagram below we have partitioned the region R into r parts over each of 

which, at a given moment in time, we may approximate the spatial behavior of f* by 

an appropriately chosen single number. Moreover, we can divide the time interval 

[o,t] into , subintervals over each of which f* can be represented by a single 
0 

number. Thus by a mean value theorem of calculus we can write (2.3) as: 



k=l 

T tkr 0 

J J f (z 1
, t')G(z 1 ,z, t-t 1)dt I dA(z')* - - - -

R. tk-1 
n(�. t) = I 

i =l 
I 

l 

or as 
r 0 

= n(�, t) I I cp.(t--r) G .. (-r) (2.4)
l lJi=l -r=o 

where z is in R , and. where f*(z' ,k) = <P;(k) for somej  �• in R and k=t' in i [tk-l 'tk]. 

Thus the time index has been discretized along with the space index, and , 0 is the 

integer such that tk > t , when k > , . 
0 0 

Moreover, we have set:

J 
k G(�· .�. t-t I )dt I dA(�·) G .. (, -k) - Jl J 0 Ri tk-1 

t 

Subregion R.
l 

Region R Subregion R.
J 
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We next decide that only p of the r subregions in R will contribute essential 

dynamical effects to n{�,t) at z in R 
J 
.. Hence (2.4) can be written



T= 1 

T TOp 0 r 
Enj(t) cp.(t-T)G.. (T) +

l l J 
cp.(t-T)G.. (T) 

l l J 
E E E= 

p+1i=1 T= l i= 

(2.5) 
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In this way the second sum term in (2.5) becomes the noise Ej(t). 

D. The Linear Regression Equation 

It is now a simple pair of steps to the form (1 .1). Let us write, for 

fixed j 

and 

with cp (t') 1

i
= 0 for t' < 0, i = 1, ... , p. The  T 1 denotes transpose. So _t (t) i

is the driving force vector of T components based at a point in R , starting itso i
force terms at the prior time t-1 , and going into the past to t-T 

0 
. There are 

no driving forces, by construction, before t = 0. With this notation, (2.5) 

becomes 

n (t) = [_tl
T(t), � (t), ... , ipT(t)J + E.(t)

J. 
Gl . J-J 

-
G2J. (2.6) 

G 
-pJ. 
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for all integer times t ..::_ 0. 

We can write (2.6) out explicitly for times l, ... , n, i.e., for any n times 

(not necessarily consecutive) representing n snapshots of the dynamical process in R. 

The resulting n copies of (2.6) can then be arranged in vector form: 

Gl.-J 

T T T n.(2) 
= 

.! (2) .! (2) ... .!p (2) +J 1 2 
£
J. ( n) 

n. (n)J 
G
--PJ 

'i... X f3 

i .e., as 

(2. 7) 

where y_, !, Ji and� are defined as shown. In this way we have realized (l .l) in 

a specific dynamical context, with Ji now interpretable as a vector of Green's 

function values, arising from the solution of (2.1) subject to certain initial 

and boundary conditions. The noise vector£ is seen to be the linear superposition 

of (in practice usually very many) perfectly legitimate pieces of information about 

the dynamical system in R. But by definition, unwanted information is 'noise'. 

By the grace of the central limit theorem, the successive realizations of� arising 

from more or less independent successive n-samples of then field in R can usefully 

be considered as drawn from an infinite ensemble of gaussianly distributed 

n-dimensional vectors. 
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E. Discretized Solution of the Wave Equation - Predictive Mode 

We return to the discretized solution (2.5) and examine it for the possibility 

of yielding up a predictive equation. How must (2.5) be modified so as to have a 

prediction of n (t) from knowledge of the driving forces ¢ (t-T)? Clearly, to 
j i

achieve this, the summation over T must not begin at T = l, but at some integer 

t > l. For in order to predict n (t) we must restrict use of driving terms to some 
j

finite time in the past of t. Thus we can write (2.5) in the predictive mode as: 

T 
p TO r o 

= E E ¢.(t-T)G.. (T) + E E ¢.(t-T)G .. (T) 
1 lJ 1 lJi=l T=t i=p+l T=l 

where now the noise term £.(t) contains information - all inaccessible by fiat - about 
J 

effects at other places up to the present and effects at the same place in the 

immediate past. A reduction of (2.8) to (2.7) now can be made, with no major 

changes in the steps: The time lags in -G .. now being at t > 0 and continue to T ·
1

 
J O' 

the time arguments in _! (t) now begin at t-t and continue to T-T • The final form
i 0 

of the regression equation (2.7) is unchanged. 

F. Discretized Solution of the Wave Equation - General Mode 

The preceding modification (2.8) of (2.4) suggests still another. It is 

possible in principal to have information about the drivers ¢ (t-T) for T = l, 
i . . . , 

t, theri a gap of knowledge from t+l, ... , to m, and then knowledge of ¢ (t-T) i 

for T = m+l, ... T
0
 • The resultant form of (2.4) can be written in general as 

 



j 

(2.9)y. ( t) = E E q,.{t-,)G .. (T) + i.(t)
J 1 1J Ji=l ,ET 
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where now T is a set of integers where the information about q, {t-,) is known for each i

, in T. Clearly (2.9) covers both (2.8) and (2.5), and even (2.4). Once again the 

general regression form (2.7) results. 

The form (2.9) is sufficiently general to allow even negative integers. The 

interpretation in this case is that of a postdiction of the observed field y {t), 
j

i.e., a characterization of the past behavior in terms of its future behavior. This 

is not as absurd as it may first appear. 

G. Postdiction vs Prediction 

As we shall see in the next section, the determination of the� vector via 

least squares fit of!_� toy_ is unconcerned about the specific information 

contained in!_ and y_. From an algebraic point of view, the normal equations will 

work on any!_ and any y_ to produce an estimate of�- Yet there is something in our 

intuition that says (2.7) in the real world will be more successful in the predictive 

than the postdictive mode. Intuition is correct, but for reasons which are not 

easily stated in everyday terms. A partial explanation follows. 

If we return to the wave equation (2.1) and set the dissipative term a to 

zero, the exponential terms in the Green's functions of (2.2) become unit-valued. 

In this case it can be shown that the predictive and postdictive modes of (2.7) are 

equally powerful with respect to any measure of hindcast skill and any measure of 

forecast skill we can reasonably devise. When a >  0, however, the predictive mode 

requires t > 0 and the -at e terms tend to dampen the effects of £.(t) in (2.9), but
J 

-at 
the postdictive mode tends to magnify the effects of £.(t) since t < O and the e

J 

terms can become enormous for reasonably-sized negative integers in T. 



\ 

16 

This situation is closely analogous to the numerical problem of trying to 

solve a partial differential equation, such as (2.1), backwards into time, starting 

from given initial conditions and boundary conditions as in par B above. As the 

numerical procedure is followed for a case in which a> 0, it is found that 

numerical instabilities arise and as one progresses into the past the solution 

literally blows up by producing enormous, unrealistic n(�,t) values for t  < 0. 

By the same token, solving (2. 1) forwards into time, any slight numerical glitches 

(e.g., round off errors) arising in the machine's performance (which in the 

-at previous case were disastrous) are dampened by the presence of the e effect, 

errors are forgotten, so to speak, and information about � (t-T) for t> T  i , 0 for 

some integer T0, does not contribute materially to y (t), for large t-T. j

H. Interim Conclusions 

The net result of these observations about (2.7) vis a vis (2.1) indicates 

that we should expect our predictive uses of (2.7) to be generally more effective 

than the .postdictive uses. For once in this real world of real frustrations 

besetting the forecaster of geophysical time series, something seems to be working 

in his favor: if he keeps good records, the forecaster doesn't have to worry about 

postdiction, and he can turn to overcome the evils of the lesser of the two tasks: 

prediction. 

Yet the damping mechanism in (2.1) eventually catches up to the forecaster 

here, too. His records, no matter how well gathered and kept, will be relevant 

only for limited predictions into the future; in attempting a given prediction, 

damping makes irrelevant the use of information beyond (say) T into the past;o 

damping and unforseen wanderings of � in the future and elsewhere make irrelevant 
i 

his predictions beyond T into the future. If he turns to predict the predictorso 

�-,
l 

he could, if not careful, become enmeshed on the threshold of an infinite 

regress. 
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With these reflections, we turn to the exposition below with an overriding 

feeling (despite the aspect of precision and power it at first conveys) that it is 

merely an exercise in algebra and geometry bordering on the brink of futility. 

3. Least Squares Estimate of� 

Having examined the dynamical basis of (1.1), we now turn to the practical 

matter of estimating the model parameter� and also the model noise£ in (1. 1 ). 

To begin, we have the unknown,_§_ and two knowns y_, !_ from which we attempt to find 

the best approximation_§_ to_§_ in the least squares sense. 

Let!_ represent an n x p matrix of p columns, each of which comprises n 

measurements of a driver force field. Thus if X = (x x ••• x ), then x.  
- -1 -2 =

--p -J
T

(x ' x ' ... , x ) are the n measurements at the jth point in space. The lj 2j nj
Tcorresponding n values of the observed field y_ are given by y_ = (y , ... , y ) _

1 n 
Our discussions in §2 show that (1 .1) may be taken in its general mode, so that 

what we are now to do holds equally well - in an algebraic sense - for both 

predictive andpostdictive activities with (1.1). 

We wish to represent the vector y_ as a linear combination of the vectors 

x., j = 1, ... , p. Thus let us write 
-J 

1 0 1 for y_ - E (3.1)
� akk=l 

With 
,L 
v and the x. given, we search through the set of all p dimensional vectors

-J n 
� (a.= , a , ... T , a ) for that which minimizes llill 2 E 1_ 2 p = o. 2• Clearly, for 

j=l J

a useful and unique solution to this problem, we must postulate that n.:.. p at this 

stage. 

Now from (3.1), the jth component of o is 



j = l,... ,-n. (3.2) 

Thus we wish to find the a. which minimize 
J 

(3.3) 
j=l 
E 

A necessary condition for the minimum of the function r is the set of p conditions: 

l!:.. = 0 ,k = l, ... , p .  (3.4)aak 

Thus in (3.3) we require 

n Par = -2 E [y. - E x.ka J x. = 0 t l, ... ,p aat k Jt 
= 

j=l J k=l J 

whence 

j=l 

P n n 
E E[ E 

j=l 
] y.x. t 

J Jt 
= l, ... ,p . (3.5)X. kx. 

JtJ 
ak = 

k=l 
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The set (3.5) is the desired collection of p linear equations in the unknowns 

a ,k = l, ... , p. Knowing the x and the y , we can thus find the solutions of k jk j
(3.5). We can put (3.5) into matrix form to simplify subsequent work with it and 

its solution vector. Towards this end we note that the right side of (3.5) is the 

inner product of 'i.. and � ' i.e.,x_T� = � T  
t. . The quantity in square bracketst t t 

on the left in (3.5) is the kt element of the symmetric matrix !T! = !:_, i.e., 



zk£ 
= zik· Hence (3.5) may be written 

�,_,
k=l 

Z X Tytka.k = -£ - (3.6) 

If we denote the 1 1 ,
£th row of Z by £

3.. 
 then (3.6) can be written 

-£ L 

9
'- x Iv 1, •.•,£ pz

- a.- == , . 

Collecting these p equations together on a vertical stack: 

T 
�l 

a. = y_ (3. 7) 

which is 

Solving for a. and henceforth denoting the solution by •�•, we find 

(3.8) 
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This is the desired least squares estimate of the model parameter f, using the 
known time series information in! and y. In order for the inverse in (3.8) to 
exist, the rank of _X must equal p, i.e., the p vectors x., 
linearly -J 

j=l, ... , p must be 
independent. This we assume henceforth. 

4. Analysis of the Residual Noise 

We now inquire as to how well the approximation of the observed field y 
by linear combinations of the x. went. There are -J two separate aspects of this 
approximation. Firstly, we write 

--n-p 

I£ A

fory - ! fI 

( 4. l) 

Here e: 
--n-p 

is an n dimensional vector which summarizes the fit that we have made 
toy. IIEn  - l / 2 is the p minimum value of ll�//2 sought in §3. We can write 
(4. l) in the tautological form: 

,L --n-p (4.2) - -

Xv = s + e: 

Next we inquire as to how well we have approximated the signa  Z K f by! 
A 

f . Thus, 
secondly we write, 

Ep' for X s -! i (4.3) 

Here e: is an n dimensional vector. We now can write another tautology:
--p 

X s = - -X S + e: 
-p (4.4) 



Combining (4.2), (4.4), we find the general form of (1 .1): 

(4.5) 

where we have written 

(4.6) 

It should be noted that Eis introduced into the theory in a way which anticipates 

its determination in practice: (4.1) obtains by direct computation the portion 

; and _(4.3) obtains its orthogonal complement In practice can be partially�-p .£p· .£p 

estimated only after several samples of size n - i.e., several fits of (1 .1) to fixed 

data sets f, have been made, and provided the sampling has been done from the same 

noise population. In general, however, is not exactly estimable. It is simply � 

not observable without some inkling of_§_, our main unknown! This is the reason why 

.£ is then given a uniform variance for each component. In our ignorance, it's the 

best we can do (see, however, §6D, E below - also note §108). 

A. The Data-Space Projector 

In order to understand the physical and geometric implications of the above 

definitions of E , E , X s, X s, and their interrelations, we digress here to 
-p -n-p - - - -

introduce an important matrix f_, the data-space projector, and develop some of its 

consequences useful for linear regression theory. 

When we form f _§_, using the representation for s in (3.8), we find 

(4.7) 
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where we have written 

(4.8) 
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By direct computation we find that the n x n matrix P has the following properties 

P X = X (4.9a) 

(4.9b) 

p p = p (4.9c) 

(I-f)f =f(_!_-f) = 0 (_Q: nxn zero matrix) (4.9d) 

(_!_-f) (I- f) = (_!_-f) (_!_: nxn identity matrix) (4.9e) 

Property (4.9a) states thatf acting on! leaves! unchanged. Actually, 

P 
-

acting on each column vector 
-
x. of X leaves x. unchanged; for the meaning of

J -J 
PX isf _ � ... ] = Px P� ... ] as an application of the definition�1 2 � 1 2 �
of matrix multiplication will show. Hence by the meaning of matrix equality, we 

conclude that for each j=l, ... , p, Px. 
-J 

= 
-J
x ..

 

Property (4.9b) saysf is symmetric, while (4.9c) results from two 

applications off when P is written on the form (4.8) . Property (4.9c) and (4.9a) 

are equivalent when! has rank p. 

Property (4.9d) follows immediately from (4.9c), and will be crucial below 

in our further analysis of noise and linear regression: it says that the operator 

_!_-f is orthogonal to f. The practical import of this orthogonality is that it 

carries over to vectors which are images, under f or (I-f), of other vectors. 

Thus if _Q_ = Py and E.. = (_!_-f)�, then necessarily E.. and _Q_ are orthogonal. Indeed 

E..
T
.Q. = [�T (_!_-f)T ](fx.) T T T T

= � (_! _ -f) f]y = �
 (_!_-f)f]y = � Q y = 0. In this deduction 

we used (4.9b), (4.9d) and the fact that (AB)T = �T �T and (� + �)T= �T + �T,  for 

any two commensurate matrices�.�-

[ [

[ [
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Another useful and far-reaching consequence of the properties (4.9) is that: 

any element of E can be uniquely decomposed into a sum of two vectors, one lyingn 

in the space E spanned by the columns of 
p -

X and the other in the orthogonal complement
 

E - to this space. n p To see this, let R(f) = {�: � = �} and R(_!_-f) = {�: (_!_-£)� = �}. 

It is easy to see that both R(f) and R(_!_-f) are subspaces of E . Then if z is anyn  

vector in E  ,�= P� + (_!_-f)� is the desired decomposition. To see this, let n
M(�) = {� :  for some ..L v = (y, ... , y 

p 
) , -x = -XY}. M(_X) is the p dimensional vector

space spanned by the columns of f. We now show that R(f) = M(f). If 2 £ R(f), then 
T -1 T 

� = f �= !(! ! ) ! � = Xa, a 

T -1 T
where = (! ! ) ! �- Hence � £ M ( ! ) ; so R( f ) 

< 
M( ! ) . 

On the other hand, if � M(�), then for some !! (a , ... , a )T 
£ = , 1 -x = -

p 
Xa, and

Px = PXa = Xa = �• and � £ R(f); so M(!) < R(f). Hence M(f) = R(f) and R(f) has 

dimension p. Let l = (y , ... , ) be a basis for R(_!_-f). Since R(_!_-f) is a1  ;
subspace of E 

n 
, we know at least that q < n. If z £ E , then we can write any -

- - n 
z

in E  , as shown above, as a linear combination of a vector in R(f) and a vector inn
R(_!_-f), i.e., as a linear combination of the p vectors xj and the q vectors Yj• 

Therefore !, l together consist of a set of linearly independent vectors that span 

E  . Hence we must have p + q = n, i.e., q = n-p. Clearly each element of R(_!_-f)n
is orthogonal to each R(P) so R(I-P) -- is the orthogonal complement to M(-X) in E 

n 
.

Finally, there is only one way to write� as a sum of a vector in R(f) and one in 

R(_!_-f). Suppose, e.g., that i = x+y = �• + y', with �,�• in R(P) and y,y' in 

R(_!_-f). Then since (�-�•) + (y-y') = Q, we can apply f to each side and find f(�-�•) + 

f (y-y') = f (�-�•) = Q, whence Px = Px 1, and by definition of R(f), � = �• • On the 

other hand, applying (_!_-f) to (�-�•) + (y-y') = Q yields y = y', in a similar 

manner. Thus the main assertion above is proved. Henceforth we will simply write 

'E p 
I for R(f) and 'E ' for R(_!_-_P).n-p 

Since f maps E onto E , P has rank p; and since (I-P) - maps E onto E ,n p - - n n-p 
(l_-f) has rank n-p. A further study of P and (l-f) is made in §2 of Appendix A. 



B. Analysis of£ 

Returning now to the definitions of -E 
p 

, -n-pE  in p�r A, we see that from 

(4.1), (4.7) 
� 

= =£n-p ,z-� ,z-fi. = (l-f),z (4.10) 

Hence E is in E By construction of£ (as a linear combination of the -n-p n-p -p
columns of -X in (4.3)) we find £n is in E . Hence by our observation in par A,

� p 

the decomposition (4.6) of£ into£ and E is unique.- -p -=-n-p 

Alternately, we can arrive at the decomposition of£ by, applying f to 

each side of (4.5), using (4.7), and (4.3) for£ , along with (4.9a); we arrive
-p 

at: 

(4.11) 

Using (4.5) for ,z in the right equality of (4.10), and (4.9a), we have 

(4.12) 

Equation (4.10) gives us the constructive definition of£ in terms of -n-p ,z alone 

(as a projection onto E ), while (4.11 ), (4.12) let us see 
-p 
E , £ as projectionsn-p -n-p 

onto E ,  E of the noise vector E. Also, Eq. (4.7) says� is the projection of 
P n-p 

,z onto E . 
P

C. Analysis of ,z, §_, and!§_ 

Returning to (4.2) we can by (4.12) write that as 

� 

=,z ! i + (l-f)£ (=fi. + (l-f),z) (4.13) 
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and (4.4) by (4.11) as 



r '

(4.14) 

Moreover, from (3.8), with (4.5), and the orthogonal decomposition of£, 

(4.15) 

Here, very clearly, we see the roles in describing y_, ! _§_ of the two error-vectors 

• - in (4.13) and (4.14) and their relative orthogonality. In (4.15) we see£p £n p 

8 as a random perturbation of l?._ either via the full E or via its projection £ on E .p p 

5. Standard Form of the Regression Equation 

We will show that the regression equation (l. l), i.e., 

y_ = xa +£ , ( 5. 1 ) 
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if we know X and the statistics of£, can always be reduced to the form where 

X \ = I (5.2)
-p 

and 

(5.3) 

Here Ip, ln are identity matrices of dimension p, n respectively. In other words, 

the nxp data matrix! can, without loss of generality, be considered as a set of 

p column vectors, each column a time series, such that the ith column x. and -, 
the j column � of X are uncorrelated and of unit length: j 

x.Tx. = cS •• i,j=l, ... ,p.
-1 -J l J 



Moreover (5.3) states that without loss of generality the noise simultaneously 

with (5.2) can be of zero mean and uncorrelated with uniform variance a2 
• That 

is, by ( 3. 3) 

<E: • > = 0 , 
J 

<E:. E: • > = a2 o . . i ,j = 1 , ... , n .
1 J lJ 
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The ensemble average operation<> is over some specified set of random variables, 

e.g., the set of normally distributed n dimensional vectors alluded to in the 

closing remarks of §20. 

A. Singular Decompositions of Matrices 

To facilitate the proof of assertions (5.1)-(5.3) we pause to gather the 

essential elements needed in that proof. The material here is general and of 

potential use in studies of linear regression of dynamical systems. 

If C is any pxp syrrunetric matrix, then a fundamental theorem of linear 

algebra states that there exist p orthonormal pxl vectors -e , ... , e , which we1 -p 

can gather together in a pxp matrix I= (� � ... ), and there exist p eigenvalues 1 2 �

i , ... , t which we can put in pxp diagonal matrix form L = diag (t , ... , t ),1 p 1 p 
with the property that 

C E = E L (5.4) 

where 

Hence we can express fas 

(5.5) 



If we write 

'L
h21 .

for d1ag (Q. ½, ... , Q,p ½) (5.6)
1 

then (5.5) can be written 

(5. 7) 

Hence if we write 

h
'S' for E L 2 (pxp) (5.8) 

we have found the square root off, in the sense that 

(5.9) C = S S
T 
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T
Next, suppose that we have any nxp matrix Y. Let C = Y Y. Hence C is 

a pxp symmetric matrix and by the preceding analysis it has an associated pxp 

eigenvector matrix I and pxp eigenvalue matrix !:. with the properties stated below 

(5.4). Thus we can write 

(5.10) 

and 

'A' for l I, (nxp) 

and observe that, on using (5.4), 



Thus if we write 

-k: 
'X' for A L 

2 (nxp) 

(assuming f is positive definite, i.e., all i are positive) then 
j 

L 
k:2

A = X 

and (5.10) becomes 

(5.11) 

where 

This factoring of r is its singular decomposition, with the n X p matrix A 

comprising in its columns the principal components of Y, i.e., (5.10) in the form 

(5.12) 
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is the principal component (or empirical orthogonal function) decomposition of!_, 

with the orthonormal vectors of Ethe empirical orthogonal functions or principal 

vectors· of Y. 
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B. Uncorrelating the Noise£ 

To demonstrate that (5.1) can be written with (5.3), we proceed as follows. 

Suppose we have a linear regression equation in the form: 

X = W a + o (5.13) 

Where W is n x p, and o is n x 1 with the assumed known property 

<o o T> = o2 V (5.14) 

We observe first that by subtracting <f> from each side of (5.13), we can, after 

relabeling, satisfy the left condition in (5.3). Now, clearly the n x n matrix 

Vis symmetric. Then by (5.9) we can find its n x n square root S such that 

lAssuming y_ is positive definite,* we multiply each side of (5.13) by i- : 

(5.15) 

and observe that 

* If this is not the case, we can also handle the slight complications ar1s1ng 
therefrom. To do so here will cause too much of a digression from the main 
line of the development. The main point to note in this paragraph is that,
in order to reach (5.18) below in practice, we must have in hand the matrix 
Vin (5.14) in some form. 
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as was to be shown in (5.3). Thus writing 

-1for S X
'y_ ' 

I 1 y for s-
1w 

and 

I
E for s-

10 

(5.15) becomes 

(5.18) 

where E has the property (5.3). Moreover, � may be estimated . via 

(518a) 

Observe that a in the noise-free case is in principle unaffected by pre multiplying 
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-1 (5.13) by� . Hence in the case of no noise, (5.18a) should recover� exactly. 

C. Orthonormalizing the Data Matrix 

Using the decomposition of I, given by (5.11), in (5.18), we can transform 

(5. 18) to: 

(5.19) 

where we have 

(5.20) 

and where!,!:_ and fare as given in the preceding discussion of the singular: 

decomposition of Yin par. A. Hence in (5.19) 

and so properties (5.2), (5.3) both hold for (5.19). 



•

---
----

Drawn for 

n = 3, p = 2 
E
n-p 
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6. Geometry of Linear Regression 

The analysis of the residual noise in §4 led to the introduction of a 

projection operator_!: whose geometrical interpretation suggests the following 

imagery in connection with linear regression studies. 

The diagram below is drawn for the case of n = 3, p = 2. However, it 

contains all the essential elements of the general case and is labeled to 

suggest the gene�al case. 

A. Euclidean Geometry of the Diagram 

Every fonnula in §4 and derivation there may be interpreted in the light of 

this diagram; and other formulas and definitions may be read directly from it prior 

to formal proofs or definitions. For example, from Pythagoras' theorem and the 

orthogonality of the pair e , e 
..:..p 

, and the orthogonality of the pair X s, e , 
-n-p - - -n-p
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we find that 

(e triangle) ( 6. l ) 

(<P triangle) (6.2) 

These relations are read directly from the two right triangles in the figure 

(labeled via angles e, </>). They are proved in general by means of the representation 

of the vectors on the right sides as appropriate projections via f or (lf) of the 

vectors on the left sides; and then using (4.9), Another relation, based on the <P 

triangle, and (6.2), is: 

-

!tll 2= 
A 

+ lll.-
A 

(<P triangle) (6.3)IIY ll!(�.@.)112 !tll 2 --

This relation shows that I IY!tl 12 attains a minimum when t=t for a given 

y, !, n and p. 

B. Kinematics of the Diagram 

The kinematic aspects and random aspects of linear regression stand out in 

the diagram. Thus!.@.is the underlying fixed signal which is perturbed by random· 

additions of£, so that we may watch the random variable y twitter about as 

successive realizcl!Jions of£ are added to the fixed vector!.@_. Our estimate!� 

of the underlying signal is also a random variable, its wanderings over the space 

E being propelled by the random vector in E . As we saw in (4.11), is the
P � £pP

projection of -E onto E . These images suggest that the pair E , E and the
p -'-? -11-p 

pair -Xe, - -11
E 

-
are each independent pairs of random variables. These facts are

p 

borne out in our statistical studies in §§2, 5 of Appendix A and form the basis 

-

mailto:Thus!.@.is
mailto:IIY-ll!(�.@.)112


.,. 

•
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of the probability density derivations occupying the main portion of the study 

below. 

C. Fixed-XS Interpretation of the Diagram 

In the interpretation of the diagram above it should be kept in mind that 

the diagram is for a random noise£ associated with a fixed!� vector - a fixed 

signal associated with a specific set y_ = (y , ... , y )T of observations and set1 n 
! = (� , ... , ) of forcing field data. If we go on to a new set y_ and! down the 1 �

time stream (say) it is possible that the pdf governing the residual noise vector£ 

(as discussed in §4) will be different. If that is the case, the successive 

realizations of£ in the diagram may be distributed quite differently relative to 

the first diagram. Thus it is generally not possible to associate the same 

diagram above with two successive (n-sample, p-predictor) experiments. 

D. Definition of a Stationary Setting for the Diagram 

We may put the preceding observation in perspective by stating it in a 

positive rather than negative way. If we have two or more successive (n-sample, 

p-predictor) experiments, and conducted in a milieu where the pdf of£ is the 

same for all experiments and so that the ratio I l�l I 2/a2 is the same in each 

experiment, then the same diagram holds for all the experiments. In this sense 

we may say that the random noise vector (or its pdf) is stationary, and that the 

experiments of the type (n-sample, p-predictor), occur in a stationary setting . 

This situation could arise in practice, and its earmark would be a definitive 

spread of·£ vectors (as found in (4.6)) which, via a successful statistical test, 

are all judged to belong to the same population. 

E. Determining Stationarity of a Setting-- The Associated Fixed-XS Interpre­
tation of the Diagram 

It is, in the last analysis, only by direct experimental determination of 
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we £µ, �- and hence£ (as sketched in §4) that can know the pdf of.£ and can p 
imagine the diagram above occurring in a stationary setting. This would be done 

over some finite set of (n-sample, p-predictor) experiments. Once the pdf of the 

n-dimensional vector£ has been estimated from this finite set, we then may imagine· 

any one of those experiments with its fixed n, p to be interpreted via its 

regression diagram above. That is, we imagine the! of that experiment given, and 

an underlying unknown J?_ present. They_ that we have measured is then thought of as 

a random perturbation of the fixed!� via an£ drawn from the population as just 

determined by estimation. 

7. The Performance Indexes of Skill and Unskill: Q, S, C and I, R, V 

We now come to the key ideas in judging the goodness of fit of X � to the 

observed field y_. Contemplation of the regression diagram of §6 shows that the 

smaller 11�- l I is, all other things (n, p) the same, the better is the regression p
fit of!� toy_. In other words, the smallere is, the better is the fit. An 

intuitively desirable skill index would then increase as e decreases. In order 

for the skill index to be free of units and scale sizes when describing goodness 

of fit we can adopt ratios of the lengths of various portions of the diagram to 

reflect the skill of the fit. The most natural candidates for such skill ratios 

are the trigonometric functions associated with thee triangle. There are six 

trigonometric functions associated withe (see the mnemonic diagram below): three 

of them decrease as e decreases; namely, sine, tan e, sec e; and three increase 

ase decreases, namely cos e, cote, csc e. It is this behavior of the latter 

three that suggests adopting them as skill indexes, and 

.. 
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hence assigning the former three as unskill indexes. The table below summarizes 

these definitions and the names and symbols we attach to them in order to 

facilitate discussion of their statistical properties and conventions later in 

this study. We use the squares of the trig functions because of the relatively 

simple algebraic and occasionally linear connections between them. 
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HINDCAST PERFORMANCE INDEXES 

Symbol Name Trig Analog Basic Oef1n1t1on Connections pdf Ref. 

Skills 

Q 

s 

C 

canonic ski 11 

classic skill 

cosk;ll 

cot2 e 

cos2 e 

csc2 e 

11! i.112111!.n-pl 12 

11! ill2111t.l 12 

2 I It.I l tl 1!.n-pl 12 

Q = "f-5,. C-1
-s 

S = 1-R a .JLl+Q 

CC _l " l+Q1-S 

(8.1), (A48) 

(8.7), (A51) 

(A48) 

I 

Unskil 1 s R 

u 

ineptness 

residual unskill 

unsk111 

tan2 

sin2 

sec2 

e 

e 

e I 

I 1!.n-pl 1211 I! ii 12 

11!.n-pl 1211 lt.112 

I lt.11211 I! ii 12 

1-SI = S • U-1 

R = 1-S ,. f+T+I 

U • i ., 1+1 

(8.4), (A49) 

(ASl) 

(A49) 

By using the various connections between thee triangle and the noise comporents 

£.p' � ' the basic definitions above can be given numerically equivalent forms.p 
For example, 

· 

we can also write Q as 
A 

2
A 

2 ll�.tll /IIY!tll using (4.2). In this way 

Q becomes directly computable from the observed field y and the data field!, where 

f is of course given by (3.8). From Q the remaining two skills follow by the 

indicated connections. Similarly,  the ineptness I is si_mply the reciprocal of

canonic skill Q,hence directly computable, and so the remaining unskills are 

readily forthcoming from I (and hence ultimately Q). 

From a statistical aspect, the most basic of skill indexes is the canonic 

skill. Its probability density function (pdf), as we shall see in Appendix A, 

follows most simply from that of the residual noise vector�, the fountainhead of 

all the pdfs in linear regression theory. Moeover Q's mean and variance alone 

have simple closed expressions. All other five pdfs could follow (if one chose) 

from Q's alone by simple geometric and analytic considerations. There are three 

-

.
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natural pairs among the six indexes: (Q, C), (S, R), (I, U): Since Q and C are 

simply related by a Zinear relation we need only study Q. Moreover, since S, R, 

and I, U are a1so linearly related pairs, we need only study (say) S, and I. We 

are particularly interested in Q and its arithmetic inverse I; their relation is 

not as simple as the linear relations among the three natural pairs. 

The presence of S in the basic triplet Q, I, S and in the connecting 

relations was singled out (from the various other possibilities) because S is the 

classic skill index initiated by Lorenz, and later studied by Davis, and Barnett 

and Hasselmann. 

. .  

8. Probability Density Functions for Q, I, and S: Their interpretation and 
their behavior 

The probability density functions of the performance indexes allow us to 

see at a glance where the indexes mostly dwell in their respective ranges; they 

. allow us to easily and exactly compute the means and variances of the indexes; 

they allow us to construct confidence regions for estimates and they generally 

allow us to theorize about statistical questions arising in regression studies of 

physical fields. Once the probability density of the noise vector £ is determined, 

the density of each index is fixed. In this study we have chosen the normal law 

governing£ because of its relatively frequent occurrence in natural phenomena and 

because of its mathematical tractability.* The details of the derivations of the 

six indexes based on the normal law for£, are given in Appendix A. The treatment 

there is rigorous, and essentially complete. In this section we single out for 

discussion three of the indexes, namely Q, I and S. The reasons for these choices 

were explained in §7. Throughout the discussions below, A =  I l!fl l 2  /a2 (signal 

to noise ratio), n = sample size of an experiment, p = number of predictors in an 

experiment. 

* The reason for this choice is given just below (2.7). 

.. 



A. Pdf and Moments of Canonic Skill Q (cf. (A48), (A55), (A58)) 

-172 (½ )r 
P (X I n,p,11.) = e 

CX) 

L 
IQ 

r= r. 
• 

o 
(o___::x <oo) 

( 8. 1 ) 

n - p > 2 (8.2) 

n - p > 4 (8.3) 

11. 11.

B. Pdf and Moments of Ineptness I (cf (A49), (A59), (A60)) 

= (n-p) [n-p+2]e-
2 r

s

-
-o 

;� • [2s-p-2][2s+p-4].' p>4 (2nd

(o___::x <oo) 

(½ )s 

s ! 
r s+½n 

r ½ n-p r 
X 

) • --�- , n>p�l
s+½p x)s+½n(l+

(8.4) 

�I = -7211. 1 
( )n-p e 

00 '211.(1 )s 
r s ' s=o 

l 
2s+p-2 , p > 2 (1st raw moment, µ 1 1) (8.5) 

µ 2 

1:11. oo (i )s l 
raw moment) 

(8.6) 

11. ½(n-p)-1
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The variance doesn't appear to have a simple closed form, and so crf = = µ 1 
2

µ2 µ -2 
may be determined numerically. 
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C. pdf and Moments of Classic Skills (cf (A51), (A64), (A65)) 

r�__,,_ 

(8. 7) 

-k2A 00 (k2A) r 

r! 
[2r+p]2r+n 

. 
raw moment, µ'1)(1stµ =e

S 
(8.8) 

r=O 

2r+2+ (2nd raw moment) (8.9)2r+2+n 

The variance is computed via a�= µ2-µ1 2
For small signal to noise ratio A : 

(to first order in A) (8.10) 

½A (l- )S
0

, S :: 
0

p/n.=S + 
0 

Hence S
0 

is the mean value of S for the case A= O. 

For small signal to noise ratio A: 

0
2 ;;; iln-p) [-P. 2A. (n+np+ 

y)J (to-first order in A) (8.11)-S rlTn+2J n n(n+4 

= 

(l+p+S)o J ' S = p/n .n+4 o 

For A= 0, the exact result holds: 

a2 
= n+2

2(1-So)So - 2(1-p/n)(p/n)
n+2 

-
S 

(8.12) 
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D. The General Behavior of Q, I, S with variations in n, p, A 

Before describing our numerical studies of the behavior of some of the 

formulas (8.1) - (8.12) above, we return to the geometric setting of linear regression 

in §6 and recall the discussion of its proper interpretation: we are in a stationary 

setting and the diagram there shows a vector!f (the signal) to which is added 

a random vector� (the noise) to produce the random vector y_ (the observation) 

associated with a value of e. Now imagine a new (n-sample, p-predictor) experiment. 

This produces a new realization of y_ = !f +£) and hence a new value of e and 

corresponding new values of the six performance indexes, Q, S, C, and I, R, U. 

Single out, say, Q. Each new realization of e (through a new realization of y_, X 

and £) produces a new value of Q = cot2 e. \�ith the accumulation of very 

many realizations of y_ in this stationary setting there appears (for a chosen!I 

location in E a 'cloud' of y_ points in the space E (E in the diagram). The
P n 3 

average location of this cloud - its center - is normally!I• If, e.g., 

2
£ � N (O,o  
-

n -
I ), then the center is
--n 

!I and its size is governed by the size of o2 
•

Thus the cloud will hover very near the plane E (E in the diagram) if o2 is much
P 2 

smaller than I IXal 1 2 i.e., if = I l�l l 2/o2 , A is large. The value of e for such a 

cloud will always be near O and so the associated sprinkling of the values cot2 e 

on the real line will be located a large distance from the origin. That is, for 

a large signal to noise ratio, canonic skill Q will tend to be large. 

Returning to (8.2) we see that it corroborates our preceding conclusion that 

the average value of Q increases with A for given fixed n, p. The diagrams below 

sketch the two clouds of y_ points for cases of small and large A. 



sma 11 A , 1 a rge e I s 
sma 11 Q = cot2 e 
large I= tan2 e 
sma 11 S= cos2 e 

XS 

large A, small e's 
1 arge Q = cot2 e 
small I= tan2 e 
large S= cos2 e 

From these diagrams we see that ineptness I, for given n, p, decreases with 

increasing A while both canonic skill Q and classic skill S increase. When A= 0, 

the cloud engulfs the origin of the diagram and e often is in the vicinity of 90°. 

The average values of Q, I, Sin this case are easy to reckon: 

p-2 

= p n-p > 2 (8.13)
µQ n-p-2 

= � A = 0 , n-p > 0 
, p > 2 (8.14)µI 

:E. n-p > 0 (8.15)µs n 

42 §8 
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Observe that µ , µ increase as p increases for fixed n showing that, in a stationary Q S 
setting, hindcast skill on the average increases as the number of predictors is 

increased. Notice that these are average increases, meaning that in successive trials 

for a case of fixed n, p we need not always have Q or S greater than their 

correspondents for a case of the same n (say) and smaller p. Notice also that 

even though Q and I for each realization of E are related by the connection IQ = l, 

their population averages need not be reciprocal. 

Perhaps the overriding observation for the A = 0 case - the case of no 

signal - is that S, e.g., in a given stationary setting can fluctuate and land 

anywhere in its domain (0, l) as we perform hindcast experiments in that setting. 

That is, just because there is no signal, the value of S need not always be 0. 

As (8.15) states, the average value of S is p/n. Similarly, Q need not always 

be zero, and the closer p is to n  (within the stated condition n-p>2) the higher 

is the average value of Q. Even ineptness when there is no signal, can be 

brought quite low on the average over a set of successive experiments in a 

stationary setting by making p sufficiently near n. 

E. Study of Some Specific Examples of the pdf's of Q, I, and S 

1) We consider first the properties of the canonic skill Q. Figure Q-0 shows 

plots of (8.1) for the case of n = 10, p = 5 as A takes on the five values 

A = 0, l, 2, 5, 10. The horizontal axis from O to 00 is the range of Q (=x in (8.1)). 

The vertical axis is the probability (density) of Q. The area under each curve is 

of·course unity. By (8.2) the area of each curve is balanced around 

µ = (A+p)/(n-p-2). Thus for the A 0 curve, the mean of Q is at 5/(10-5-2) Q 
= =

5/3 = 1.67. We see that, as A increases, the main mass of a distribution moves 

to larger Q values until at A = 10, µ is at (10+5)/(10-5-2) = 15/3 Q 
= 5. At the 

same time it is clear that the variance, or spread of the mass about µ increases as Q 
A increases. From (8.3) we find that crQ = 80/9 for A =  0, and crQ = 600/9 for A = 10. 
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This enormously accelerated spread of Q as A increases is understandable from the 

unit circle diagram for cot2 s (cf §7). 

cot 8 --------,---i/ 

dQ = d cot2 s 

· As we saw above in paragraph D, small 0 means large cot2 s = Q. At the same time, 

small random changes in small 0 can result .in enormous changes in cot2 s. Hence as 

A increases, and a2 is fixed, the vector y_ is drawn down to E and held there at 
P 

small 0 on the average. But now the random perturbations of !I by£ produce 

relatively great changes in Q from one realization to the next, i.e., 

dQ = d cot2 s = -2 cot0csc20d0. This sensitivity of Q at small 0 (high Q) to changes 

in 0 could be used to test effects of changes in p on a hindcast. Figs. Q-1 to Q-5 

show the rapid shift in probability mass as p increases from l to 7 for fixed 

n = 10, for all five cases of A from Oto 10 shown. The graphs warn us at the 

same time about the relatively great spreads of Q readings possible when n and 

p are relatively close. Notice in particular as in Fig. Q-5 the spread in Q when 

n = 10, p = 7. This is anticipated from (8.3) by the presence of n-p in both 

factors in the denominator. This spread increases with increasing A as seen in 

both sets of Figures Q-1 to Q-5, and Q-6 to Q-10. This spread is dramatically 

smaller when� = 0, say. Hence a tight cluster of Q readings around a indiaates 

poor hindcast fits in a low signal to noise setting. The larger the A the larger 

will be the spread of Q, and the better the fittings on the average. 
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2) Consider next the properties of ineptness. Fig. I-0 should be compared 

with Fig. Q-0. The curves present clearly inverse characters. Now ineptness 

quickly decreases in Fig. I-0 as A increases from O to 10 in five cases. The 

spread of I decreases as A increases. A tight set of I readings around O indicates 

good hindcast fits in a high signal to noise setting. The smaller the A, the 

larger will be the spread of I, and the less good the fittings on the average. 

The sharp rise of the pdf for I in Fig. I-1 for the case n = 4, p = 3 is indicative 

of a singularity at I = 0, as may be seen from (8.4). For in this case we have 

!2(n-p)-l =-½, so P (xj4, 3, 0)-+ 00 as x-+ 0, but in an integrable way so that the1
area under P (xl4, 3, 0) is still l. Observe also that for nI  = 5, p = 3 we have 

½(n-p)-1 = 0, and so P (xl5, 3, 0)-+ a 1 1 0, i.e., its limit is a finite nonzero 

quantity. (The high-rise curve in Fig. Q-1 is an example of Q's singularity for 

p = 1. This is P 's only singularity, while P has one whenever n�p = 1 ).q 1  

3) Consider finally the classic skill S. 

Fig. S-0 contains curves of P (lO, 5, A) for five choices of A = 0, l, 2,I  

5, 10. The curves were drawn from numerical values based on (8.7). The range of 

S is (0, 1). The curve for A = 0 is symmetric whenever n = 2p and of the general 

form: 

ps(x I n,p,O) = r(½n� ½P-l(l-x)½(n-p)-1 (8. 7 with A=O)r(½p)r(½ n-p)) x 

As n-+ 00 and we fix p/n =
, S , 

0
the mean µ = S 

0 
stays fixed and curve becomes moreS 

peaked (cf (8.12)) and can be shown to approach gauss' curve. In general, for any A 

as n-+ 00 and we fix p/n = 

. 
S 

0 
, the curves will approach the gaussian bell shaped curve.

This follows from an examination of the higher moments and the central limit theorem. 

In general, for fixed n, p, as A increases, the mass of the S readings shifts toward l, 



J 

46 §9 

as expected. In the sets of curves shown in Figs. S-1 to S-5, we see the effect 

of increasing A on moving the originally disparate curves in Fig. S-1 to near 

conformity in h�gh skill in Fig. S-5. In Fig. S-1, incidentally, observe how 

for p = 1, n = 10 the mass of S is very close to 0. As p goes up through the 

ranks through 2, 3, 5 and 7, the curves' maxima move steadily toward l. In the 

set of Figures S-6 to S-10 we watch the effect of increasing A on various choices 

of n for fixed p = 3. The curve for n = 4, p = 3 in Fig. S-6 has an integrable 

singularity at x = 1, as may be seen from (8.7). There is also a singularity 

of P when p = l (see Fig. S-1 and the interesting case of p = l in Fig. S-4). 5 

The set of curves, S-6 to S-10, as well as S-1 to S-5, are particularly in­

structive in showing how, for fixed p, the classic skill deteriorates as n 

becomes larger, regardless of the size of A. The latter, to be sure, for large 

A, holds back this deterioration as n increases, but only by varying amounts 

does it stay the inevitable decrease of the average S to zero. Equation (8.10) 

expresses this phenomenon succinctly, but only approximately and for A not too 

large. 

9. The Mean Signal to Noise Ratio i 

A. Introduction: The signal to noise ratio A = I IK@..I j 2/cr2 ostensibly 

depends on the data matrix X and the underlying physical process'Greens' 

functions (cf §2). It also depends on the dimensions n, p of! and i• We shall 

now show that under normal working conditions we cannot let A and p vary 

independently of each other without incurring problems of interpretation and 

application of the theory of the performance index pdfs studied in §8. It will 

be recalled that in §8 we allowed all three parameters n, p, A to vary indepen­

dently as we explored the geometry of the regression setting. This was permissible 

in that more or less abstract setting. But now we consider A, as defined, and 

the implications of its connections to! and i· This will lead to the introduction 

of A = A/p. 
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B. Principal Representation of A: Using the theory of §5, let 

t , j = 1, ... ,p,and � ' j = 1, ... , p be the eigenvalues and eigenvectors ofj j  

the symmetric matrix !T!• Define the nxp amplitude matrix A= ! ,;_, where 

E = [� , ••. ,1 �],and then the nxp basis matrix�= A!:.-1:: 2 
, where!:.= diag

(r , ••• , t 
p 
). If 

-
A =  [a

-
, ••• ,a] 

-p 
and 

-
B = [b , ••• ,b], then we have1 1 1  

- -P 
respectively the principal component and singular decomposition representations 

of X: 

(9 .1) 

which in vector form become 

p

X = E a.e.T 
= (9.2)

j=l-J-J 

where�,,;_ are orthogonal matrices, i.e., 

T b.Tb. = =
e. e. = o .. o .. , i,j l, ... ,p (9.3)-1 -J lJ -1 -J lJ 

The vectors B = [_Q. , ••• , 
1

E.] are an orthonormal basis of E . We use them in p p §2

of appendix A. (For si plicity we drop the subscript p from� �). 

We may go on to use this representation to write 

p i, p 

� = E t'�J -J 
Tb. (e -8)-J- = E 

j=l j=l 

where 8- = e� 8 is the jth component of _8 relative to the basis _E, the one used toJ -J -
give EOF representations of the spatial extent of the data matrix. The quantity 

j j!@_j 1 2
 used in the signal to noise definition can now be written (using (9.3)) as: 



j=l 
= E (9.4) 

Hence we derive at the principal representation of A: 

J j=l 
A 

= I IM.l l 2 
/o

2 = E (t./02 )13�
J 

C. Geometric interpretation of the principal representation of A. 

The representation in (9.5) has the following geometric interpretation, 

relative to the linear regression di_agram in §6, On the one ha,nd the n 

dimensionality of the diagram in §6 arises from th� sample size n taken in 

gathering up the n components y of y_. On the other, the p points in space j 

(over the ocean, atmosphere, etc.} where those� samples are taken have, at 

any moment, associated with them p values x ' j � 1, ·•·? p (a row of!) which tj

we could plot as a point in a p dimensional s·pace. There would be n of those p 

dimensional points (or vectors), and we schematically show them in the diagram 

below for the case p = 2. 

♦ ♦ .,, + 

l 

48 

(9.5) 
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We show in particular the two basis vectors � ' � which resolve the n l 2 

row-vectors of the data nxp matrix! into their principal components. 

and i are the variances of the data set along these orthogonal principal axes 2 

� , e . Thus the dimensionless ratios t /cr2 are ultimately where the signal to l 2 j

noise ratio resides, namely in.the comparison of the principal variances of the 

P time series in! with the variance cr2 of the noise£. The values ej are intrinsic 

properties of the physical system and are presumably independent of X and e 

(cf (2.7)). 

D. Introduction of i: We now recast (9.5) as 

(9.6) 

where we have written 

r I l pfor - E (t./cr2 )e� (9.7)
P j=l J J 

thereby defining the mean signal to noise ratio. In any given physical setting 

from which we can draw p time series out of a large reservoir of time series, of 

fixed sample size n we know intuitively that i (despite the various fluctuations 

encountered as we draw from that reserve and increase p and continue to reckon the 

resulting i's, i.e., we know that i) will remain generally in some relatively small 

interval of values. The e , being Greens' functions, essentially of the kind in j

(2.2), also present a more or less spatially homogeneous variation with j. There 

are fluctuations of the e with h, of course, but the mean or average of these j 

.. .  
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values together with those oft. are expected to be relatively steady as p
J 

increases. In this way we argue that the signal to noise ratio A should be given 

an explicit lin�ar dependence on p, particularly for the purpose of exploring 

changes of the performance indexes under changes with p or A. 

E. Some Immediate Consequences of the Definition of I 
Let us return to the closed forms for µ , a2 in (8.2), (8. 3) and use in Q Q 

them the representation A = pi for A. We note first of a 11 that 

µ = x+e p( l +i) _ £. (l+i}
=

Q n-p-2 n-p-2 - n (l-p/n-2/n) 

For n large compared with 2, we can write this approximately as: 

s (l +I) 
-

0 (9.8)1-S
0 

Here (9.9) 

The definition of Q is suggested by the general connection between S and Q in the
0 

Table of §7. That (9.8) arises so neatly this way, with its connections to the 

case of i = 0 (i.e. S 
0 
, Q ), is a good sign that (9.7) is a natural definition 

0 
in

the linear regression hindcast context. Except for the condition on n, (9.8) is 

exact. Equation (9.8) states that µ grows linearly with the mean signal to noise Q 

ratio i. 

We consider next (8.3) in which we substitute pi for A and find 



(9.10) 

If n is large compared to 4, then we can write this as 

[S2 (l+i2 ) + 2S i]
0 0a2 

"° 2 (9.11)
Q n· [1-S J3 

0 

(9.12) 
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From this we see how, holding n, p fixed, aQ grows parabolically with A, or 

alternately crQ decreases as 1/n with increasing n for fixed S or Q . 
0 0

This latter

fact is in accordance with large-sample theory. The p-dependence of aQ is now 

essentially in the Q 
0 

(cf (9.9)), and we can see rapid growth of crQ with p holding 

n, A fixed. 

10. The Monte Carlo Skeleton of Linear Regression 

It is possible to explore the linear regression problem by means of a 

Monte Carlo simulation of the noise vector E added to a fixed sign�l vector 

� =!�- No restrictions need then be imposed on the distribution of E in order 

to gain an insight into the corresponding behavior of y, ! §__, and any of the 

performance indexes associated with these vectors. We outline the proof of this 

possibility in three stages. 

A. The Standard Gaussian Case 

To see how the simulation goes, first of all in the standard gaussian case 

(§5B), recall the regression diagram in §6. The vector!� is fixed in E . To!§__ n 



is added the random n dimensional vector.£ to yield the observation vector y. 

The representation of!_§_ as a vector in E 
n 

can be simplified by a rotational change

of basis of the kind adopted in the derivation of the x2 distribution in §3 of 

Appendix A (Stage 3 there). Thus the diagram of §6 becomes: 

--

p = 2 

n = 3 

E: 
-n-p 

-- Xs
---

- ' 

✓- --------------------,---- -----.,,tt 
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That is, the vector _g_ =!_§_is now aligned along the first axis of E 
n 
. If we adopt

the coordinate frame -B = [B B ] used in §2 of Appendix A, we can use the
-p --n-p 

independent gaussian variates o ,j=l, j . . . , 
n, defined there to simulate the random 

Tactivity in the diagram. Leto= (o ,  1 . . . ,
o ) be the vector of uncorrelated 

n 

zero-mean unit-variance gaussian variates. Then I j!.@_j j2/cr2 = µ 2/cr2= µ 2 = A the 

signal to noise ratio for the present set up. 
A 

The Monte Carlo simulation of!_§_ in this frame is then 

(10.0) 

and that of y is 

(10.1) 



Further we have the simulations 

�-p = + 00p+l �+1 + ··· n � 

(10.2) 

(10.3) 

(10.4) 

Thus we can write y_ as 

(10.5) 

as usual (cf. (4.2)). It is easy to check that squares of lengths of the above 

vectors use only the squares of the appropriate o occurring in their representations.j  

Thus, e.g., 

11xe11 
2 

The Monte Carlo representations of the performance indexes in §7 are then given as: 

(µ+o1)2 + o� + ,,, + o� 
= (10.6) 

... + 0�0�+1 +
Q(n,p,A) 
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= 
� 

(10.7) = 

(µ+o1)2+o�+ ... +o�+(ot+ i+ ... +o�) 

= 
(µ+o1)2+o�+ ... +o�+(o�+l+ ... +o�) = 

(10.8) 
n 

· · · 
= 

= 

= 
o�+ 1 + ... +o� 

= 

(µ+01)2+0�+ ... +02+(02 

1+ ... +02) P p+ n 

(µ+o1)2+o�+ ... +o�+(o�+l+ ... +o�) U.(n,p,>.) = � 

= 

(µ+01)2+0�+...+02 
S(n,p,>.) I 1�1121 I lrl 12 

C(n,p,>.) Ilzl l 211l�_PI l2 

1+...+02o2 

p+ 

o2p+l+ +0n
2

I(n,p,>.) 11�-pl l 211IXsll2 

(10.9)(µ+o1)2+o�+...+o� 

R(n,p,>.) 11�-pl1211lx.11 2 
(10.10) 

(µ+o1)2+o�+...+o� 
Ilzl l 2111�11

2 

(10.11) 
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To operate these simulators: For each realization of say (10.6), generate the n 
realizations oj, j=l, ... , n. Then perform the remaining indicated operations in 
the numerator and denominator of (10.6). Repeat as often as desired. Collect the results and statistics as required. Observe carefully how the n realizations 
o , ... 1 , o are n used in the fractions. After many such realizations the values of 
Q (say) will spread out on the positive real line (0,00) with a density that 
approximates that given by (8.1), and the averages of Qin the simulations will 
approach that given by (8.2), etc. In fact, our analytic and algebraic derivations 
of the formulas in §8 were checked using (10.6), (10.7), (10.9) in thousands of 
realizations for each formula. This check also served to show how relatively 
cheaply the Monte Carlo simulations of regression settings can be carried out. 
Many interesting experiments are suggested by the formulas (10.0) - (10.5) and 
those in (10.6) - (10. 11). 

§10 



B. Correlated Gaussian Noise Simulation 

A moment's reflection on (10.0) - (10.11) will suggest that their formulations 

are applicable, as they stand, to more general probability settings than the standard 

one. To see this, consider the rotational realignment of the axes of E to place�§_
p

along the first axis in E (and hence E ). T
n

his realignment does not change the 
p 

correlation properties of the population of vectors£, provided we rotate the£ 

vectors along with the frame as we make the desired alignment. Thus if M is the 

orthogonal matrix used in going from (A22) to (A23), and the present version of 

(A22) is 

- - - - -

2 

I f 1-k: l T -1 
P/2 exp {- -2(x-µ) C (x-µ)}

(2n) 
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where f is the population covariance matrix of the noise vector £ of current interest, 

then clearly since, 

Twe would use the covariance matrix _!i CM in devising the simulation calculations in 

any of formulas (10.0) to (10.11). The generation of gaussian variates with a 

Tgiven covariance matrix � CM is easily effected. In this way we could generate 

several thousand trial values of Q, say, and get an impression of their mean 

values µ and their spread crQ and so on, when the noise is correlated. Q 

There is an alternate Monte Carlo approach to .finding the pdf of any 

performance index in the case of correlated gaussian noise. This is based on 

knowledge of the covariance matrix f of the noise and particularly on its square 

T root matrix i, where i i = f. We use the canonic skill Q and the developments 

in §5 to explain the method. Suppose the data matrix comes to us as W and the 

T -1 -1residual noise vector is o. Then <co> = C. Moreover, 'j_ = i _!i; £ = S o are 
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respectively the new data matrix and uncorrelated noise vectors, with the latter 

having zero mean and unit variance. The canonic skill in this uncorrelated setting 

is Q = I I Ya I 1 211 l� l 1 2 2 
, by definition. Since cr = l, the signal to noise ratio>--p

is simply IIYal 1 2
 =µ2 • The Monte Carlo simulation then proceeds as in par A above. 

" 
T = T Thus, the vectors Ya [(µ+o ), 0 , ... ,o ] and � = [o ... 1 2 - p+

, ,o ] are formed.p p l n 
Then apply� to the vectors Ya, £ to form S(Ya) and S(£ ) and thus the quotient--n-p - - - n-p 
Q 1 = Il�(Ya)I1 211 l�(� )- I 1 2, p which is the canonic skill in the original correlated 

setting - since SY= W and S £ =o . In this way each realization of the�- - - ..:...n-p --n-p 
uncorrelated unit-variance variables o , .•. ,o yields a realization of Q 1

1 Manyp • 

such realizations can be used to build a histogram, i.e., a finite approximant to 

the pdf of Q 1 • Observe that this procedure could assign a meaning to>- where it

would not, prima facie, exist. 

C. The General Case 

The foregoing observations suggest that the Monte Carlo representations 

(10.0) - (10.11) can be used for any random noise population provided the pdf 

for the population is known in sufficient detail so as to allow a simulated 

sampling via the usual Monte Carlo techniques. Moreover the pdf should allow a 

rotation of itself into the preferred alignment of! f_ along a particular (say, 

the first) axis of the coordinate system for E . Even the latter rotation is non 
longer needed if it becomes too arduous to perform the rotation. What would be 

needed in this event is the set of the n components of! f_ in the B-frame of E . Ifn 
! f_ = (µ , ... , µ , 0, ... , O)T are these components, then (10.0) would be replaced 1 p
by 

! f_ = E (µ . +o.) b. (10.12)
j=l J J -J 

and ( 10. l ) by 

y_ = E (µ . +o.) b. (10.12)
j=l J J -J 



The forms of (10.2) - (10.4) are unchanged. However, the original, simple notion 

of a signal-to-noise ratio A no longer exists and we drop it from the notation. 

The simulation of Q, for example, would thP.n be accomplished by the following 

generalization of (10.6): 

p

E (µ.+ o.) 2 

(= 1/I(n,p) )  (10.13)= j=l J J 
n 
E o� 
j=p+l J 

The o , ... , o would now be randomly drawn repeatedly from th n-variat1 e e populationn 
with the given pdf. As another example, (10.7) would become : 

j=p+l J 
o� 

p
E (µ.+ o.) 2 

S(n,p) = j=l J J 
p

(10.14) 

I (µ.+ o.)
J 

2+ 
J 

I 
j=l 
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11. Estimating the Signal to Noise Ratio A 

We have see n throughout the studies above the central rol e played by the 

signal to noise ratio A. It is therefore of some importance to determine A from 

hindcasts of real data. We shal l now consider two methods leading to the 

determination of confidence limits for A. The small-sample method is covered in 

pars A, B. The large -sample method is described in par C. 

A. Confidence interval for A via canonic skill - small-sample theory 

Let us teturn to the pdf for canonic skill in (8.1). Select a value for 

n and p. Choose a value for the mean signal to noise parameter I. This then fixes 

A =  pi (cf. (9.6)). Choose a confidence level (1-a) 100%. One can then find the 

o(½a) and o(l-½a) values of Q such that* 

* Formulas for the determination of these integrals are given in Appendix B. 
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a(½a) 

f (11.1)PQ
(xln,p,;\.)dx = ½a 

0 

o(l-½a) 

I P
Q
(xln,p,;\.)dx = 1-½a (11.2) 

0 

If we repeat this determination of a(½a), a(l-½a) for a selected set of i values 

(for fixed n,p) then we can rough-in curves (as accurately as we wish) of 

a(½a), a(l-½a) as functions of I. Let the results be as sketched below: 

Q 

Q' 

I•= o
l 

A axis 

We know from (9.8) that the mean value of Q rises linearly with i. The 

curves for a(½a), a(l-½a), as suggested by (9. 10), will diverge parabolically from 

the straight line for µ . Again by (9.10),it is clear that this departure from 
Q

the µ line can be made arbitrarily small for n chosen sufficiently large, for 
Q 

a given fixed ratio S = p/n or equivalently Q = p/(n-p).
0 0 
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Suppose now that we have a value Q from a hindcast with the given n,p of 

the diagram. Draw a horizontal line through this value of Q and determine the 

A-values of the intersections of the horizontal line with the cr(½a), cr(l-½a) curves. 

The resultant values I , I determine the confidence interval for A. That is, 1 2 
with confidence* (l-a)l00%, I is in [I ,I J. By our observations above, [I ,I J 1 2 1 2
can be made arbitrarily small for n sufficiently large for a given ratio p/n = S . 

0 

Hence the method in principle can pinpoint� if there is enough of a data stretch. 

over which we have a stationary setting. 

B. The use of any performance index to find the confidence interval for A 

The observations in par A may obviously be extended to the use of P or PS I 

in §8 to find [I ,I J. The relative capabilities of P ' P ' P in this regard will 1 2 Q I 5 
not be studied here. 

C. Large-sample estimates of A 

The large-sample method is derived from the following facts. For a given 

n, p, A, the canonic skill Q of a hindcast model y_ =!_§_+£is distributed in a 

known way, such that thepopulation mean of Q is 

= A+p (11.3)µQ n-p-2 

and the population variance of Q is 

* Proof: In the diagram, if the true value is I, then (l-a)l00% of all the 
horizontal lines randomly drawn through the axis of Q values will fall between 
the dashed 1 i nes formed by the i-2'l, 1-½a points of the pdf at X-. Therefore, if · 
Xis the true value, then horizontal lines drawn through realized Q values will 
produce intervals [I , I J such that I �il.!_ be in [I ,I ], (l-a)l00% of the time. 

1 2 1 2
This is the correct interpretation of [A ,A ]. 1 2
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2{A2+(n-2)(2A+p)} 
a2 = ___,_______ (11.4)Q [n-p-2]2 [n-p-4] 

as we see in (A55), (A58). 

If we apply the model y_ =!_@_+£repeatedly to independent data and 

observation sets !, y_, and compute in each case Q = I I xa I I 2/ 11e: 112
- • we obtain

-n-p 

a set of (say) m Q-values which, in the limit of an infinite number of such 

independent trials (i.e., m + 00), are distributed with mean µ and variance Q crQ. 
Therefore, the statistic Z determined by any finite sample of size m: 

(11.5) 

where, 

is distributed approximately normally with zero mean and unit variance. The 

larger the m, the closer the approximation. This fact follows from an application 

of a simple form of the Central Limit Theorem (Hoel, 1954, pl07). 

To apply the foregoing observation, decide on a level 1-a of confidence. 

Let Z1 be the two� -sided normal pdf limit associated with 1-a. Then for a sample 

of size m, Q = m-1(Q +... +Q ) is ·known. µ and are determined by p, n, but1 m Q aQ 

with A unknown. Hence we have the bound-condition on A given by 

(11.6) 

In principle we may now vary A in (11.6) until those two values of A are found that 

make the statistic Z take on the two extreme limit values ± Z1 
'2a 

• These two values

of A will form the desired ends of the confidence interval for the true A. 



We can solve for these A values by setting 

Q-µQ = 

-1:: 
a m 2 

Q 

so that 

(11.7) 

It is easy to see, at least in principle that, for sufficiently large m, two 

roots A , A of (11.7) will exist. Thus in the diagram below is a sketch of the 
l 2 

straight line generated by varying A in the left side of (11.7). Letting A vary 

in the right side of (11.7) produces two parabolas, one for each sign. These are 

sketched as the two curved lines in the figure below. 

plot of left side of (11.7) 

Plots of right side 
of ( 11. 7) 

A axis 

A = ( n-p-2) Q - p 

(root of left side of (11.7)) 
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The parabolas meet the straight line at abscissas ,\ , ,\ , the desired confidence l 2
limits of,\. The estimate,\ = (n-p-2)Q-p of,\ _always lies in the interval 

, ,\ ] Cl ly by (11 .3), <�> = <(n-p-2)Q-p> =,\, and soi is an unbiased.1 2 . 
estimate of,\. 

We now can see that the intersections at ,\ , ,\ will always exist for a 1 2 
givet, r. n, since m'2 in (11.7) can be made arbitrarily large, thereby producing 

parabolas tn t are arbitrarily shallow, and hence, by their intersections with 

the straight line, produce an interval ,\ , ,\1 2] about,\ that is arbitrarily small. 

A mechanical procedure for determining ,\ , ,\ is given as follows. Rearrange l 2 
(11.7) into the form of a quadratic equation: 

where d =-- {n-p-2]2 

• [n-p-4] ,\ = (n-p-2)Q-p 

Hence 

-b ± 
k: 

(b2-4a) 2 

2a 
(11.9) 
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[

where 

a 

b 

= 

= 

d-1 

2d,\ + 2(n-2) 

Monte Carlo tests of Large-Sample Estimation Procedures 

A practical question arising in the use of (11.9) is: how large must m be 

in o�der to make (11 .9) a useful generator of the confidence interval ,\ ,,\1 2]? 
A Mont Carlo procedure for testing (11.9) is given below in nine steps. The 

[
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method uses the representation (10.6) of Q. 

1. Fix n, p, A, choose m, q (defined below). 

2. Fix the confidence level 1-a and hence ½a, Z
'20, 
1 • 

3. Compute m realizations of Q = [{µ+£ )2 + £� + ... +£�]/[£ ; + ... +£�] 1 p 1
(A fresh, randomly chosen batch of variates E , ... , E is used forl n 
each realization). 

- -1 4. Compute Q = m (Q + ... +Q ) from the result in 3.1 m 

5. Compute A , A from (11.9). 1 2 

7. Repeat 3-6 a large number, say lOOq times where q = l, 2, 3, 

8. Make a tally of the number of times out of lOOq that A is in [A , A ], 1 2
in step 6 (If, e.g., a = .05, then A should be in [A , A ] 95q times). 1 2

9. (Optional) [Conduct a Kolmogorov-Smirnov test on the 
-

empirical
distribution prod

t

iced by the lOOq realizations of {Q-µ )/[a m -k2] = Z Q Q
to see if it may be judged to be normal with zero mean, unit variance. 
In particular, how large should m be to allow us to conclude that Z is 
so distributed, with a given level of confidence? The result of such 
tests would allow us to decide on useable values of m and to have an 
idea of how good such a value of m is in providing normality.] 
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12. Model Significance 

A. Solution of the problem 

The prob�em of model significance, defined in §18, can be solved by the 

technique described in §llA. It is clear from the diagram in §llA that if we have 

a value Q' from a hindcast which is such that in [I{I2J,I1 = 0, then with confidence 

(1-a) 100% the value I= 0 is in [o,I2J. In other words, if Q' falls in the heavy 

interval (in the figure) associated with A =  0 (and hence A =  0) the model is not 

significant, and this judgment is reached with confidence (l-a) 100%. This procedure 

can be effected by programming (11.1), (11 .2) using (A48) in which A =  0. 

8. Equivalence with Barnett and Hasselmann 

The preceding criterion of model insignificance, namely I 0, is equivalent 1 = 

to Barnett and Hasselmann's criterion that f = 0. For if I l�I l 2/cr2 = A = 0 and X 

is of rank p (as it usually is taken to be in hindcasts) then it follows* that 

S = 0. Conversely a zero f vector implies A =  0. The procedure of Barnett and 

Hasselmann is based on (A44): The quantity f 
A 

is found; f is assumed zero by 

hypothesis. Then, if I ltl l 2/a2 does not exceed the (say) .95 significance level 

of the x2 (p) distribution the model is judged insignificant. 

C. Generalized Barnett and Hasselmann procedure to find confidence intervals 

The procedure of Barnett and Hasselmann can be generalized as follows. Let 

r = I Iii l 2 /a2 
. We use (A25) to construct a(½a), cr(l-½a) curves via a selected set 

of I values and given n, p. Now "f = A 
0 
/p, A 

0 

as in (A43). From (A43), (A30) we have

* One may see this also from inspection of (9.5). All the terms in the sum are 
non-negative. Hence if the sum is zero, and the p values lj are not zero (this
is the rank condition in another form) then necessarily the s are 0. j 
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= p(l+I) 

so that the mean value of r rises linearly with i for fixed p. Moreover, from 

(A33) we expect the cr(�2<l), cr(l��2<l) curves to diverge approximately linearly from 

µ (since a�= 2p(l+2i)). A sketch of the curves is given below ..r 

µ = p( 1 +I) r 

>.. axis 

In a hindcast I l.@..l l 2/cr2 is determined. A horizontal line through this value fixes 

the (l-a)100% confidence interval for i, namely [ip"�- If i = 0, the model 1 
is judged insignificant. Otherwise, we can then estimate [i ,>..1 2J of the significant 

model. 

D. Further generalizations 

It should be noted that the parameter cr2 in the above procedure must be 

known. (Barnett and Hasselmann in effect find the entire matrix <e:/>.) Otherwise 

cr2 must also be another population parameter to be estimated. In this event, the 

generalized procedure of par C must.be amended: An unbiased estimator of cr2 is 

I le: I 1 2 
-11-p 

/(n-p), which follows from (Al8) and (A30) (for>..= 0). From (4.15) we see 



that S T= + 
-l

-e - (X--X) -X£T--'--P. If we adopt the orthonormalized data matrix -X, i.e., 

X XT = I , then e 
A 

X £ T= e + . This coor
---p 

dinate fr
- - --p 

ame was used in §2 of Appendix A

to show the independence of£ and£ Hence we can form the statistic n 
-p -n-p 

from 

hindcast information: 

A A

I 1�112/[l ly-Xel12/(n-p)] (12.1) 

The numerator is distributed independently of the denominator . The first numerator 's 

distribution (cf (A43)) is x2 {p, I l�l l 2/o2 ), the denominator 's distribution is that 

of a variable x ;c where x � x (n-p), 2 
2 c (n-p). Therefore, the distribution2 2 2 

= 

of by H' in = =n is given (A47a) wherein, c = 1, c (n-p), so that 1 y c ;c =2 1 2 
1/(n-p). Moreover k = p, k = n-p. >. = ll�ll2/o1 2 1 

 2 p>. , >. = 0. That is,
= 1 2 

H 1 ( n I p, n-p , >. , 0 , 1/( n-p ) ) = H 1 (n). Thus 1

H' ( n) 
r =o 

[n/(n-p)] r
+½p-lr(r+½n) l (12.2)• r(r+½p)r(½(n-p)) • 

[l+n/(n-p{+½n • (n-p) 

We may now compute o(½a.), o(l-½a) from (12.2) for various choices of i , the1 reby 

forming confidence curves as before, and making a diagram of the kind shown below: 

----

(12.2) 
o( 1-½ a) 

-

o(½ a) 

0 
(i,) 2 
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The determination of the confidence interval is shown in the diagram for a given value 

n. If an n from a hindcast falls in the interval [a(Y,?(J), o(l�½a)] associated with 

A = 0, then the model is not significant. This judgment can be reached directly l 
(as in par A above) by computing in this case these a-limits via (11.l), (11 .2) 

from (12.2) in which A = 0, i.e., from 

r(½n)
H'(njp,n-p,0,0,1/(n-p)) = ----­ (12.3)

r(½p)r(½(n-p)) [l+n/(n-p)]
kn
2 (n-p) 
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l 

This is a special form of Fisher's variance-ratio distribution (cf Rao, 1973, pl67). 

The more general problem of finding a confidence interval for A uses (12.2). l 

Therefore, a computer program should be available for working with the general 

case (12.2) and thus incidently, (12.3). 

13. Model Significance vs. Model Skill 

We can now make some final observations on the relatively inverse behavior 

of the properties of model significance and model skill: that is, how, in trying 

to increase one, we necessarily decrease _the other, statistically speaking. This 

may be seen using a set of confidence interval diagrams of the kind introduced in 

§11. The changes in the diagrams below are the result of increasing the number p 

of predictors, holding the number n of samples fixed. The changes are observable 

for a continuum of mean signal to noise ratios I, and are based on the suggestions 

in (8.1), (8.2) as to how the mean µ behaves and on how the a(Y�), o(l-Y�) curves
Q 

behave with changes in p. 



r 

fixed n 

small p 

fixed Q 

.,,. ,,.,,,. ].lQ
o(l-½a) 

0� 

------ - --------

- . = 

: : 
a) 

n-p>2 
1: axis 

-----].lQ 

-
-------

fixed n fixed Q - ,--�------
t --

! 
b) 

medium p
n-p>2 

n-p>2 

3:- axis 

fixed n 

large p 

fixed Q 

\ axis 

c) 
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A. Significant-model strategy 

In diagram a), p is small relative to n. An observed high value of canonic 

skill Q produces a pair of i values well away from O on the I axis and we have a 

highly significant model. Holding n fixed but increasing the number p of predictors 

generally raises the average Q at each I, as in diagram b). The increase in p 

also spreads the o(!--2<l), o(l-½a) curves away from the straight µ line. Hence the Q 

same high Qin a) is now less spectacular probability-wise and still very good: 

but the confidence interval for I has moved toward 0. Finally in c) p has been 



increased to a relatively large value just under n. The higher-spread Q values 

for this model now are very probable and engulf the same Q of the preceding two 

cases. Thus the Q is as good as before, on an absolute scale, but it is 

probabilistically mediocre. Moreover, it can be produced by a non significant 

model, since the confidence interval now includes O on the I axis. 

B. Significant-skill strategy 

There is a complementary way of seeing the above phenomenon through the same 

general diagrams. Now they are sliced vertically by a fixed mean signal to noise ratio I.

fixed n 

small f 
n-p>2 

µ = Q
Q 

·---··-····· ..... 
I
1 

o(l-½a µQ 

o(½a) 
d) 

1 
! 

..______...,_________ A axis 
0 fixed X" 

fixed n 

medium p
n-p>2 

µ = QQ 

a(l-1 µQ
-

-· ..... . 
e) 

i 
- A axis

0 fixed A 

= Q ·················�- IµQ 

o(l-½a). 
--
-----

µQ 

fixed n 

large p
n-p>2 

A axis 
fixed A 

j 
f) 
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In diagram d), the small p/n ratio with the given T produces a µ (=Q) as shown. Q

Compared to models with T = 0, this is a very high Q score. It is highly 

significant. I� e), p has increased so that we have an even higher µ than Q 

before, but relative to the T = 0 model's Q scores, it is not as impressive (yet 

still good). This is because µ is just outside the significance interval for Q 

T = 0. For the choice of pin f), where p is quite near n, µ is considerably Q 

greater than the two previous µ 's, but now it is quite indistinguishable from Q

run-of-the-mill Q scores produced by a model with T = 0. 

C. The complementary model, skill strategies 

Both sets of diagrams show the scientist how to increase the number p of 

predictors while monitoring model skill or significance: In diagrams a)-c) the 

underlying Tis not known. But the scientist has a certain significant level of 

canonic skill Q he wishes to achieve by a model he wants to be significant. He 

then increases p until that Q is still produced by a just-significant model, i.e., 

A is still greater than 0. In diagrams d)-f) the scientist knows or has estimated l 

A. He knows the model is significant. He wishes to maximize the probability of 

occurrence of the model 1 s average skill level Q and yet know that Q is produced 

only by a significant model. So he stops the growth of p just short of where 

o(l-½a) engulfs µ . Q

D. An indeterminacy principle 

There is an indeterminacy, as we have just seen, in the skill and 

significance of a linear regression model, wherein any attempt to increase hindcast 

skill is offset by a move of the model toward insignificance. The sample size n 

sets the background over which these antithetical tendencies of skill and signifi­

cance move. The greater n, the sharper is the background and the smaller the 



uncertainties induced by changing the predictor count p (recall o0 in (9.12)). 

Let us measure.this background uncertainty by the reciprocal of the norm of the. 

n-vector £ 

·(13.1) 

Out of this background chaos we split apart two opposing factors: one factor 

represents the viability of the model, a meld of all the skill measures of §7; 

the other factor represents the signifiaanae of the model, a measure, as its name 

implies, of its roots in determinacy. Thus we split (13.1) into 

1 I Ixe I 1 2 l 
---=--- (13.2)

I IX$ I I
2 
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= (viability)•(significance) 

The viability factor , asa reference to the linear regression diagram in §6 shows, 

uses the numerator of classic skill S, and the extension (11£ 112 + 11£ 112
 ) 

-1) ---n-p 
of

the residual noise I 1£ I 1
2 

---n-p 
used in the denominators of the canonic and coskills. 

The signifiaanae factor uses the estimate of the signal I 1�112
 occurring in the 

signal to noise ratio I l�I l 2/o2. We now see that, as n is held fixed, an increase 

of the number of predictors p will increase the viability of the model and decrease 

its s i gni fi cance; and conversely, decreasing p will decrease its viability but 

increase its significance. The product of viability and significance is a fixed 

random variable whose variance is a measure of the statistical uncertainties 

produced by the background noise. 



The split in (13.2) is not unique. But any way one cares to split 

1/11£11 2
, using p-dependent pieces, one comes up with something like a viability 

and a significan�e, to wit: 

l llill2 l 
---=--- (13.3)

211£11 2 11£11 2 1I �11 
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= (viability)•(significance) 

E. The roots of indeterminacy 

The preceding examples of indeterminacy are somewhat forced and artificial. 

Nevertheless they and their immediate variants cannot be formulated without the 

statistical tendency for various quantities in Ep to spread as p increases. For 

example, the most fundamental manifestation of this spread is evident in the 

series of graphs of pdfs for Q (the series of Figures Q-0 to Q-10). In the sub­

series that shows how (for fixed n, A) the pdfs spread their Q-mass on the 

interval (0, 00) with increasing p, we see the indeterminacy at work in its most 

basic way: in order, as p increases relative to n, to let Q reach the higher 

values, the sharp Q-distribution peaks for small p must be replaced by the broad 

shallow Q-humps for large p (recall (8.1), (8.3)). At the same time and for the 

same fundamental reason, the random quantity I l�I1 2 on the average grows as p 

increases (recall (A33), (A43)) simulating a random walk in spaces E of everp 
larger dimensions, making the location off, relative to� , harder to pin down. 

14. Description of the Tables for Q, I, S Significance Levels 

There are three sets of tables: one each for Q, I, and S, the canonic skill, 

ineptness, and classic skill, respectively (cf §7). For each of Q, I, and S we 
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list a(05), 0(95) and its mean on separate tables, for a variety of p, n, and x 

values. The x values are 0.0, 0.2, 0.3, 0.5, 0.7, 1.0, 1 .5, and 2.0. 

For example, consider the tables for canonic skill Q. Let x = 0.0. Then 

there are three tables given for this value of x: one for 0(05), one for Q, the 

mean of Q, and one for 0(95). For example, the table for o(05) of Q lists p values 

across the top and n values down the left side. The tables were made using (82) 

with (11 .1), (11,2), and setting a= 0.10. For instance, still with Q, we find 

0(05) = 0.288 for n=6, p=4, x=0.0, while 0(95) = 38.494 for the same triple of 

parameters. Note that the mean Q does not exist for this triple (because we must 

have n-p>2; recall (8.2)). However, Q exists for n=8, p=4, x=O.O and is Q = 2.000. 

The tables are included to show in a preliminary way the ranges of the 5% 

and 95% significance levels for the random variables Q, I, Sunder the assumption 

of zero-centered homogeneous-variance, gaussian noise (cf (Al)). The tables are 

not exhaustive, and perhaps not in their best form for practice, which would use x 

rather than x (cf §9). Probably the best way for a user of the present theory to 

retain knowledge of o(�:t0-), o(l-½a) and the mean of these performance indexes, would 

be not in tabular form but in the form of a computer program that would fire up the 

confidence limits o(�;t0.), o(l-½a) at will for any triple p, n, i, within reason. The 

formulas in appendix B have been tested for n up to 50 and x up to 2.0. 
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Appendix A, Derivations of the Fundamental Probability Density Functions 

The derivations below are of the basic probability densities needed in the 

study of model significance and skill in the present Linear Regression theory. Our 

observations in §§4,5 showed that we may base all our formulas on the uncorrelated, 

zero-mean, uniform-variance case. In the present work we shall therefore assume 

that the noise vector Eis an n dimensional random variate such that 

= 
_,
0 < EE > = 

i.e., 

i=l, ..., n  

<E,E,> = a2 o .. i, j=l, ..., n ,
1 J 1 J 

and in particular that: 

i.e., we assume 

(Al) 

The coordinate system and units in which we work are originally defined by the 

physical setting from which the data are drawn. 



2 

+ +

l. x2 Distribution and Gamma Distribution for / / £ / / 2/a 2 

The error vector£= (£ , T

1 £ , ... , £ ) 2 , obeys (An l) and we wish to find the 
distribution of I 1£1 / 2 = £ 2 £ + ...  £ . , / / Since 11£112 depends only on the length 
of£ and not its orientation in E , we n introduce polar coordinates in E : n

sin<j> 2 sin<j> 1 n- n-From this, 

2 - 2+ £ 2
2 + -£1 

2 ·r · · · £n 
This is the generalization of the familiar case for n = 3: 

In making the change of variables, the differentials of volume are related by 

= r dr dr2n-l 
n-1 

+
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where dQ - is the differential of area of the unit sphere in El  . For n = 3,n n 
dQ2 = sin¢ d¢ d¢ , and in E this quantity is usually called an 'element of 1 1 2 3 
solid angle'. Hence (Al) can be written 

-r2

exp{-
2

} rn-1drdQ (A2)n-12a 

From n dimensional geometry* 

(A3) 

where S is the rectangle in n-1 dimensional ¢ space such that O < ¢ . .s._ 
- l 

rr,

i = 1, ..., n-2, and O .s._ ¢ .s._ 2rr. Integrating dQ - over this rectangle isn-l n l 
equivalent to integrating the £ over the unit sphere in E . Thus using (A3) ini n 
(A2) we find the probability element for r 2 = I 1.£112 : 

( )
2 

P(r2)d(r2) - _2_0_ _ exp {-(-,-)r2 } (r2)½n-l d(r2) ·(A4a)
r(½n) 2o2 

-1- ½n 

or 

This shows that the pdf of r2 goes most naturally into the form for (r/o)2 , a 

dimensionless variable. So (A4b) can be written, without d(r/a)2 
, as: 

* See, e.g., (Anderson, 1958, pl76). 



4 §Al 

(A5) 

where �"e set 

'x' for (r/o)2 (=I 1£11 2 
/0

2 
) 

Equation (A5) has the familiar form of the x2 -distribution. Both (A4a) and 

(A4b), along with (A5) fall under the general form of the gamma distribution: 

ap
p-1G(xla, p) = {-ax}x , O<x<00 (A6)r[pf exp 

The transition from one form of (A4) to another is facilitated by the general 

property 

G(kzla, p) = l
k G(zlka,p) (A7) 

where k = l/o2 
• Another useful property of (A6) is readily verified by direct 

calculation: 

G(xla, p+q) = J G(yla, p)G(x-yla,q)dy 
0 

(AS) 

The verification requires the use of the beta function. 

The connection between the x2 and G notation is: 

x2(xln) = G(xl½,½n) (A9) 

or in function form: 



x2 (n) = G(½,½n) 

Thus the main result of this section may be stated as 

(AlO) 

1
"' G(- , ½n)

2cr2 
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or 

or 

2. x2 Distributions for I 1 2 2 2 2 
£p l l /cr and 11� l l /cr-p

�fo now derive the pdf's of I 1 l l 2 /cr2 

£p 
and I 1 _ l l 2 /cr2 

£n p • 
The noise vectors

£ • £ - ' as defined in (4.11), (4.12), are n dimensional. They are formed byp n p 
projecting the n dimensional noise vector -E onto the subspaces E , E of E .p n-p n 
The vectors E , E are in E and E , respectively, and as -E twitters about in-p -n-p p n-p 
E , these vectors E , E are confined to their respectively smaller dimensionedn -p -n-p 
spaces. This almost by itself is enough to assure that e.g., £ is a p dimensional p 
gaussian variate, but its n dimensionality must be stripped down to p dimensionality 

to be perfectly sure about this, and the uncorrelatedness of the components of 

-E and E in their respective spaces must be .checked out before \'le can apply theP -n-p 
result (AlO) of §1, above. 

Consider first the matrix P. The nxn projection matrix E. is symmetric 

(cf 4.9b) and hence by (5.4) has a set of n orthonormal eigenvectors and associated 

eigenvalues. Since P has rank p, only p of those eigenvalues are not zero. 
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Those that are not zero are all of unit value. This may be seen by operating 
on an eigenvector .!2._ of E_. By definition of _Q_ and A, Pb= Ab. Operating on 
each side of this equation, with E_ and 
Therefore 

2

A2 

using (4.9c), PPb = f}Q, so Pb= A .!2._. 
= A, i.e., A(A-1) = 0, so that the eigenvalues of E_ are either O or 1. 

Let .!2._1, ... , .!2..p be any set of eigenvectors associated with the unit eigenvalues. 
This set is not unique, but can be fixed in any of several ways* (the remaining 
eigenvectors also arise in an infinite number of ways* - they lie in E - ). Note 
that these n pb. are - in J general distinct from the x. in §4A, for -.J the latter 

= 

are 
generally not orthonormal. Thus Pb. b. for -J j = J l, ... , p. Let B = [

T 

b b ... b]
be the nxp matrix -p of T

--1 2  
these � eigenvectors. hen B B = I , which T 

cS 
. -p 

that 
-1 

•• , , , 
. . -p -p states compactly 

b. b . = -J l J J = l , ... , p. Moreover, we find, PB = Tp T 
--p B and - B = B p . 

Consider next -p- p the -matrix I-P. This, too, is a proj ection matrix, symmetric 
of rank (n-p). Hence it has n-p eigenvectors �+ , ... l ,�with unit eigenvalues, 
such that (I-P)b. = - - b., j = +

-.J p-.J l, ... , n. Let B 
-n- 

= [ b + , ... , b  
n x (n-p) matrix of these eigenvectors. T 

p
T

-p l ] be -n the
hen 

(l-E.) = 
-n-p B B = I p

.!!n-p l!n-p' and T Bn-p(l- ) = 
-n-p -n-

T  Moreover, 
E. l!n-p 

By our observations in §4A, since every b. in B is -J of the -p form Pb., and-J  
every .!2._j in l!n-p is of the form (l-E.).Q._j, it follows Tthat �

l!n 
= 

 
-p the p x �x(n-p)'(n-p) 

 
zero matrix; and also that T

l!n-p .l!p = the (n-p)xp zero
matrix. In like manner, � = 

 Q(n-p)xp'

-p �x(n-p), (I-P)B = 
- - -p -nxp 

0 . Companion relations 
follow on taking transposes of each side of these equations and using E. = E.T 

* To fix the b., j = l, ... , -J p, we observe that 
=

the numerical construction of the 
b., j l, -J ... , p, can arise automatically in the singular 

 
p  

matrixX=r =r k: 

decomposition of the 
data

=
a.e. T p 

j l-.J-J j=l 
i.J 

 2

 
b.e.,(cf§5A, 

T 
§9). TJ J he construction of-  

B , however, -
-n-p is not uniquely guided by the data, and may be done in any of 
several ways. 
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We next construct the nxn matrix B= [B B ], and observe that
- -p --fl-p 

BT B = T 
--

7'.) 
B l [B B ] = I : 0 ( ) = ----nI 

[ 7' -11-p [ ]-� .•.•• )��. ��� •. 
BT 

0 . I--fl-p -(n-p ) xp :--fl-p 

Hence the n column vectors comprising� form an orthonormal basis of E . Thisn 
also means that BT T and Bare mutual inverses. In particular BB = 

-fl 
I also.

This can be verified alternately T n Tby noting that BB = r b.b., which acts like 
- j=l-J-J

In for every y_ in E T . The operation .§. £ finds the components of the noisen 
vector in the new coordinate frame. Using the composite form of_§_, we find 

. H ... T 
T ) , ere � = ( o , ... , 6 is a p component vector and � =(o + , on ) an1 p -p p l   

(n-p ) component vector. From the orthonormality of�' we find 

T T=£BB £ 

Now the transformation BT from£ to o is volume-preserving in E (the determinantn 
of Bis unity - since T T

l..!! ..!!I = l..!!
 
I l..!!1 = l..!!1 2 = 1.!.nl = 1) .. Hence the pdf (Al ) of 

£is identical in form for o. Thus the o , j=l, ... ,n' are pairwise uncorrelated,j  
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zero mean gaussian variates of uniform variance a2 
• That is 

o '\i N (0, a2 I) (All)- n - -n 

and in particular o . '\i N ( 0, a2 ) i=l, ... , n  (Al2)
J 

and also that o '\i N ( 0, a2 I ) (Al3)
-p p- -p 

--n-p N (0, a2 I ) (Al4)- -n-po '\i n-p 

all of which may be read off from (Al) now with 6.
J 

replacing E., 
J 

j = l, ... , n. 

Moreover, and � are independent.� -p 
It follows from §1, in particular (Al0), that 

(Al5) 

/a211° 11 2 x2 (n-p) (Al6)--n-p n-p '\i 

where the subscripts on the norm bars remind us that the sums they represent run 

over p, and n-p terms, respectively. 

The final step observes that, from the definition of in (4.11), � 

= [� ] E = [�] = [ 2-p] 
Q_(n-p)xn 

p E = 

Q_ Q_ 



9 

Hence 

and so I Ir:: I l 2 /o2 is indentically distributed as I lo 112 /o2 • Therefore, by (Al5), 
p -p p 

and a closely analogous argument* for r:: , we find 
-n-p 

11 2/02 "'x2 (n-p) llr::-n-p 

(Al7) 

(Al8) 

§A2 

which was to be shown. 

*i.e., replace P by I-Pin the preceding argument, i.e., user:: = (l_-f.)£-n-pfrom (4.12). - - -
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3. Theory of the non central x2 distribution 

We now pause to develop the pdf for variates of the form I l�I l 2/o2 where 

� � Np (J:!.., o2Ip), i.e.,� is �ormally distributed such that its p components are 

uncorrelated but not of zero mean. While accounts of the theory of such� exist 

in the literature,* there is not readily available a single, simply-connected 

derivation to my liking; and since the non central x2 distribution is crucial to 

our further derivations we keep the arguments of this appendix essentially self­

contained by the observations summarized in this section. The work will proceed 

in four stages: the first stage sets up the one dimensional case; the second 

stage reduces the general p dimensional case to the one dimension and the central 

x2 cases; the third stage combines these special cases into the general; and in 

the fourth stage we develop formulas for all the moments of the non central x2 

distribution. 

Stage l: Let x � N(µ, 2
o

  ), i.e.� let the scalar-valued random variable x be 

distributed normally with meanµ and variance a2 • We are interested in the pdf 

of y = x2 
• 

Thus, by hypothesis: 

From the change of variable y = x2 
, we have dy x k2 

= 2 dx = ±2y dx. As x varies 

over ( -00,00) it causes the positive square root yk 2 to vary only over ( 0,00) unless 

we also select -yk 2 to cover the case when x is in (-00,0). Hence the pdf of y is 

* See, e.g., ( Rao, 1973, p181). This reference suggested the main line of 
derivation below. However, our treatment, in stage 4 below, of the problem 
of the moments of x2 

, seems new. 



-, 

exp 

e -(y+µ2)/2cr2 [e y µ/a 
; e

-y µ/a ] dy l = 

½ 2
p(x)dx = 

l exp {- (y -µ) } .QY_ 
k l'2(21r) 2cr 2cr2 2y 

k dy2 -µ)2} 

2cr2 

l 
(21r)k2cr 

{-(-y+ 
-1

2y'2 

½ 2 ½ 2 

k k
(21r) 2cry 2 

i . e. , 

p(x)dx = (Al9) 

This is one form of the required pdf. However, we may place it into a form that 

uses the gamma distribution, something which will facilitate later manipulations. 

Thus, we expand the cosh term into an infinite series: 

l 

(y�)
2r 

00½ cr2
cosh (L£) = E = 

2
a r=o (2r)! 

(a) 

11 

and write 

21r½( _L_) ½cr2 

cr2 

§A3 

2

(b) 

Moreover, using the duplication formula for gamma functions: 

22j-l 
=r(2j) --

1:: 
- • r(j)r(j+½) 

7T 2 
(c)



we can write 

(d) 

Using (a)-(d), (Al9) can be written as 

(-µ-)r 
(y/o2 ) r-i,

[ •
-y/202 

2cr -µ2 /2cr 2 2 

] ) • d(y/cr2 

{-µ-)r 

/2cr -µ2 2 

) • d(y/cr 2 

/2cr -µ2 2 

2 

00 

p(x)dx E= e r+k2r= o r! 2 r(r+½) 

2 

00 

2cr2 

E • G(y/cr2 I½, r+½) (A20)= e 
r= o r! 

2 

)r(-µ-
00 

2cr
2 

E G(yjl/(2cr2 ), r+½) dy , O<y<oo (A21 ) = e 
r= o r! 

12 §A3 

the last step by (A7). The quantity 2µ  / 2 
cr will become the signal to noise ratio 

i n a . 1 ate r stage . 

Stage 2: Let x , 
1

. . .  , x be p independently distributed gaussian variates each 
p 

of variance a2 and mean µ , ... , µ ' respectively. That is, x � N( µ ,cr2 ),l p i ip 
i = 1, ... , p. 2We wish to find the pdf of s = E x?/a  

•

i=1 1

The approach we use is suggested by the following three dimensional case. 



µ �-.. ------...
3 ..... 

" 

1/11 T 
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The vectorµ in the diagram represents the mean position of the random vector 

x = (x , x , x
3
)T . We establish a new orthogonal coordinate frame of unit vectors 1 2

so that the unit vector Jd I I E. I I = _j_ becomes the first basis vector of that frame.1 
We construct the remaining two�• j , so that t1_ = (3 _j_ , j , a 2 1

3
) forms basis of 1

E
3 

in matrix form. Then make the change of variables: y_ = MT�. The components 

of y_ are the projections of � on 1 , �• j_ ; hence they are the coordinates of x 1 3
in the new frame. With this change, the vector �-E_ in the quadratic form 

(�-E.)T (�-E_) occurring in the pdf: 

1 1 T 
/2 exp {- - (x-µ) (x-µ)} (A22)

(2no2)P 2o2 -- --
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= = 

. T. 

. T . T.X
_J__l J..1 J.1 

. T. 
J..2 .J..1 

.J..3 J l 

Hence 
(y -µ)2+ y 2 + y 2 

1 2 3 

becomes the new quadratic form in the pdf. In general then, for the case of p 

dimensions, we find an orthonormal basis j , .J.. , ... , Ip with .J... = wµ, 1 2 1 
µ2 

= µ, 2 + ... + µ 2, with the result that, on making the transformation y_ = MT�,
T

p 
� = !i (�-�)' 

In this way (A22) is transformed to 

1 l
/2 exp {- _ _ [(y -µ)2 + Y2

2 + ... + yp
2 ]} (2no2)P 2o2 l 

(A23) 

§A3 

Hence, since Mis orthogonal, 



-+_;;::_--�--

Y 2 2 +y y _ l 

0
2 

0
2 

2+.. 
p-

2 · 

= U + V 

Thus s consists, in view of (A23), of the sum of two independent random variables 

u, v. In particular, u = y 2/o2 where y � N(µ,o2), and the y , ... , Y are 1 1 2 p 
independent and y � N(O, 2). i o

Stage 3: Synthesis of Results 

From our work in stage 1, the pdf of u = y / 2 

1 o is given by (A20). From 

(AlO), v is distributed as x2(p-l). Our conclusion in stage 2 was that u and v 

are independent. Thus the pdf of s is found by convolving the pdfs of u and v, 

i.e., the pdf of s is, using the pdfs in (AlO), (A20): 

(-µ2 
_)r s-µ2/20

2 202 
e 

00

E J G(ul½,r+½)G(s-ul½,½(p-l))du (A24) 
r=o r! o 

The integral may be reduced via (A8). In this way we arrive at the pdf of 
p 

s = E x?/o2

r 1 
, being of the form 

=l 

-'-- �-- G ( s e -½>- ( ½>-) I ½ , r+½p ) 
-

r= r! 

roo

"
I.., (A25) 
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where A = µ2/a2, µ2 = µ 2 + ... + µ 2' x1 a  p and the are distributed independently s
i 

N(µ ,a2 
i ). 

The notation on the left in (A25) is standard for a non central x2 

distribution with p degrees of freedom and non centrality parameter A. If the 

latter is zero, then by (A9), and (A25) 

(A26) 

i.e., we return to the ordinary x2 distribution for a variate s with p degrees of 

freedom. Written out in full, (A25) is: 

(A27) 

 Stage 4: Moments of x2(xlp,A). 

We shall need some of the lower moments of a non centrally distributed x2 

variate. Write 

Hence 

�
r 

(1 r+½p 

= 
-½A 

Le 
r= o 

.

r! r r+½p (½)r+m+½p 

I I I 

µ m 
for J xmx2 (xjp,A)dx (A28) 

0 

-kA 
00 

�
r 

m2µ I = e L J
oo 

x G(xl½,r+½p)dx
1m r.r=o 0 

72 
0000 -½x r+m+½-1-1'2A 

J. dxI e= e r ! · r r+½pr=o 0 

00 
(\iA}r 

(½ r+½p r{r+m+½�) 

§A3 

00 



Thus the mth moment of x 'u x2(p,.x. ) is: 

r(r+m+½
r r+½p 

00 

2m e-½>.. (A29)r= 

r=o 

In particular, we find 

e 2 (r+½p) 

-h.X. (½.X.)
r 

e 2 + }2p] L 

+ ½p] [½.X. 

-hA 00 

(½.X.)r 

L ! 
r = o r 

I = 2µl 

(½.X.)
! 
r 

_r_!_ . r 

0000 

[r .= 2 
rr=o r =o 

e
h,X.2= -½.X.2 e 
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Thus the mean of x � x2 (p,.x.) is: 

(A30) 

Moreover, from (A29): 



This requires us to sum series of the form: 

This may be done as follows: 

Now r_x�_r 
r=or. 

n 
= _ = E 

r= 1 ( r- rr ! 

nc. = n,(n-1) ... (n-j+l) nc
. 

rj 
r! j=o 

f j ( X) 
j=o 

r-1 n r-1= oo r 

E .;-( r+l ) n x
l) ! 

00 r n 

J 1,2, ... jJ
�EE 

r=o 

n nc
.JE 

i . e. , 

n = 2, 3, ... ( A3l ) 

This provides a differential equation for f (x) in terms of the lower ordern 
functions f (x), 

0 
f (x), ... , f _ (x). The chain of equations (A3l) can be solved1 n 1

for n = 2, 3, ... since we know that 

f (x)= ✓, 
0 

r= o 

and that 

- xr xr xr 

fl ( X) 
r+l

X 
( r-1 ) ! 

= 

00 00 0000 

= EL L L
rT rT -

r=o r=l r=l 
= r 

r! 
r = o 

X
X e 

l[; §A3 
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I l1u·, w<: <..dn �o Ive (/U l) for the case n "" �. 

subject to the initial condition 

We see that the general solution is: 

X 

f2(x) = f2(o)ex + f [(2t+l )Pt ]ex - t dt 
0 

and so 

Returning toµ� we find: 

so 

(A32) 

The variance of x ,,, x2 (p,>-.) is 



20 

which comes out to be 

(A33) 

Higher moments of x � x2 (p,A) can be found similarly, using (A3l) with (A29). 

4. Non Central x2 Distributions for I Ix.I 12.1cr2 and I l�l l 2 /a2 
. 

We consider first the simpler case, namely that of�- From (4.5), and (Al) 

it follows at once that y � N (�,  a2ln). Thus each component y of y_ has then j 

property y. � N(µ.,a2 ) where µ. is the jth component of�, i.e., = t \1 x. s ' 
J J J J k kk=l J 

= l , . . ..  , n. These y are independently distributed, and so by (A25), j 

=with A = µ2 /a2 , µ2 Pf+...+µ�. Here A is the signal to noise ratio. 

We will next show that 

(A35) 

This result is plausible because, in view of the diagram in §6, !�, even though 

His a vector of n components, moves only in the subspace E spanned by the pp 
columns of X. The main goal of the following argument will be to find a 

p-component vector which is known to always have the same length as!� and whose 

components are independent gaussian variates with mean µ and variance a2 
i . 
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We may use for this purpose the basis -B of E 
n 

constructed in §2 of this 

appendix. The components of!� in this frame are reckoned by (recalling (4.7)): 

Hence 

(A36) 

and similarly we can show: 

(A37) I J!§_J J 2 

Now, from (4.4) we find 

- -

(�) 

p E 

= BT + BT 

+ BT BT 
E 

BT 

-p -p 
BT (Xs)
-p-

( X.f?_) 

pp -= 

p 
+= (_�J?) 6 

--p 

From (Al3), we know that 

Hence 

,,, N ( O , o '? I ) p -- -p
\)
-p 
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(A38) 



By this and (A25) 

where 

the last step, from (A37). 

By (A36) Vve know that I 1xs11 2 and I l�I I� are distributed identically. Hence, 

with >.. = I /X8/ / 2!a2
, as was to be shown. 

 5. l�<J��ndence of 11_XS I / 2/ o �nd 11£n-p112

We now make the observation that --X sand E are independent variates. 
-'-n-p 

This is fairly clear from the linear regression diagram in §6. Since Eis 

resolved into the independent variates E , E ,- -n- the twitter of Xs Xs p p = --
+ E

-p
is due to E only. However, this may also be established formally by using the--p 
basis -B of E 

n 
introduced in §2. Starting with the representation (4.2) of y_; and

recalling the definitions of a , a in §2,--p -n-p 

; - � -

BT X f3 + BT l E: 

[

(XS+ s )- -'-11-
p 

--p 
p 

-n-p --n-p 

BT Xs+o 
= [ ]--p - - --p 

()-n-p 

22 
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From this we read: 

(A40) 

(A4 l) 

and since, as seen in (All), (Al3), (Al4), 6 , 6 are independent, the resultp  
-p --n-

follows. An immediate corollary of this is that I l�I l2/o2 and I l�- /o arep l l2 2 

indeµendent (functions of independent variates are themselves independent). 

 6. x2 Distributions for lltll2/o2 
, llt-tll2/o2

From (4.15), we can think off 
A 

asf that has been linearly perturbed by£: 

and so we suspect thats will be normally distributed with means. To find its 

covariance matrix we use the 

Theorem.* Let u N '\, -- (µn ·-,�),-- i.e., let u be an n dimensional 

gauss i an variate with mean .E.- and covariance I· Define a p dimensional 

variate y_ = I..!! by means of a pxn matrix transformation C. Then 

y_ '\, NP (I_µ 
T 

, I_ I I_ ) . 
To apply this theorem we return to (4.5) and (Al) and note that y '\, N (�, n o2.ln)­

Thus .E.- = !f and I= o2 In, for y_ = u. Then from (3.8) we have the requisite form 

of I_= l(!T!)- fT . By the theorem, v = i has mean C = (!T l!)- !T
µ (�) =f, and 

covariance I_ I I_T (!T 1!)- /(o I ) ! (!T T
= 

2 !)-l 
= o2(! !)-1. Hencen 

* see, e.g. (Rao, 1973, pp 522). 
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(f l
--'-, f3 "J N ( _§, _ 2 

0 !fT ) (A42)p 

From this we see that for a given data matrix!, the components of_§_ and §_-J� _ are 

generally correlated. In order. to apply x 2 statistics, e.g., we would adapt 
TX so that XX.  = I (cf (5.-2)). Then* by (A25), 

,'

-p 

or 

2IIGll 2 /o2 -v x? (p,,x ) ,\ - 1 lfl I 2 
1° (A43)

0 

XT X = l 
- p 

I If-fl l 2 

1° 
2 

'\, x2 (p) (A44)} 
7. The 11-llistribution 

We now consider the derivation of the pdf underlying the canonic skill Q 

and ineptness I (cf §7 of the main text). We will pose at the outset a slightly 

more general problem and then reduce it to the Q and I cases: L,el x , x1 2 Ix t,,,Ju 

independent variates such that x 2-v 1 x  (k , 1 A )   and 1 x -v x 2(k , ). 2 2 A2 It is 

/'Ut/U'i}·cd /,(} Fi-11,L lhe !Jd}" or xl /x . 2

The derivation requires the foll owing preliminary observations on transforma­

tions of random variabl es. Suppose x , x are two random variables with joint 1 2 
pdf p(x , x ). We wish to make a change of variab1 2 l es from x , x to y , Y , where1 2 1 z 

* The A 
0 

in (A43) is simply defined to be I III 1 2/02 for the present application 

of (A25). However, see the discussion of the quantity A = I l�I l 2 /02 when 

_X_TX = I (cf (9.5)). In that setting, ; 
P \ = L Recall also (5.20).
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To see how the differential dx dx transforms, we compute the differentials 1 2 

where f and g are derivatives of f with respect to y . Then by the calculus of 
i i i

exterior differential forms (or equivalently, Jacobian theory of change of variables): 

and this is reduced using (dy.)2 = 0, (dy.dy.) = -(dy.dy.), it- j.
J l J J l 

The element of area dx dx thus transforms as
1 2 

The quantity in parentheses is the Jacobian of the transformation. Hence the 

rcJ,1ted proballility elements are 

Where 4 is defined in context, i.e., 

(A45) 
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Returning to the problem of the distribution of x ;x
1 2 

= y , we make the 
1

change of variablPs 

so that the Ja�obian is 

and from ( A45) : 

We can now drop the subscript on y and revert from y to x . The joint pdf 
1 2 2

q(J, x ) for x ;x
2 1 2 = y and x is then 

2 

 Now p = x2(k ,A ), p = x2 (k ,A ), by hypothesis. The pdf for 
l 1 l 2 2

y is obtained 
2

by integrating (A46) over the range of x , namely (0,00). Hence from (A46) and 2

(A25): 



- J 

J G(yx21!2,r+\k1 )G(x21½,s+1;;k2)x2 ctx2 

J 

Here, using (A6): 

__________ 
r+½k1 -1 r+s+1;;( kl +k2) 

,._Y __ _ -· (2J 

1·( r+'ik-
1
) 1·( s+\k2) 
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Using the known gamma function integral 



In this way we come to the pdf for x/x :;: 2 y, where x x are independent non 1 2 
central x2 variates, x '\, x2 (k ,,\ ), x '\, x2 (k ,,\ ): 1 1 1 2 2 2

-½(,\ +,\ ) 00 

l 2 

,-------------------------------- - ·---- - ------

r! s ! 

r ( r+s+l2( kl+k2)) 

r(r+\J1)r(s+½k2) 
(A47) 

00 

E= e 
r=o s=o 

2S §A7 

A. Generalization of H 

We can generalize (A47) to account for ratios of the form y = x ;x = 1 2 
c t tc t , i.e., where numerator and denominator are independent variates ( , ( , 1 1 2 2 l 2
multiplied by constants c , c , and where x '\, x2 (k1 2 i ;,,\;), i = 1,2. Thus let 

y = (c1/c2) (�1/t2) = yn. 
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Then in (A47) 

write 

(A47a) 

This is the required new pdf for the ratio n = �,1�
2
, where�, = x lc , � = x 1 1 2 2 

lc
2

and x x2
•1., (k ,>. ), x 'I., x2(k ,>. ). That is, H'(nlk ,k ,>- ,>. ,y) gives the pdf1 1 1 2 2 2 1 2 1 2

of �,1�
2 

where the numerator and denominator each differ by a fixed factor from a 

pure x2 variate. This new pdf H' is found from (A47) by performing on H the 

indicated operations on the right in (A47a). An example of the use of (A47a) is 

given in (12.2). 

B. The pdf for Q 
= I IXsl12 11l�-pl 1 2

 

As a special case of (A47), we have from (A35) and (Al8), and the fact that 

I l�l 1 2 and 11 -� pl 1 2 are independent (cf §5, Appendix A), i.e., since 

° 

x2 = I ls I l 
2 1a2 

"' x 2(n-p,O)
---n-p 

we can set 

and find: 



r +½p-1
-½A 

00 
(½A)r . r(r +½n) XPQ(x n.p,A) = e � ���--- (A48)I 

r= o r ! r(r +½p)r(½(n-p)) 

By virtue of the connection between Q and C in §7, 1.e., Q = C-1, the pdf 

for coskill C follows at once from A(48) by replacing  'x' by 'x-l' on the right 

side and 'P ' by 'Pc' on the left. The q r ange of C is (l,00 ). P is also knownQ  

as the 'non centr al f' distribution (Rao, 1973, p216). The signal to noise ratio 

A (as in (A39)) is also known as the 'noncentr ality parameter ' in advanced 

statistical theory when no specific physjcal imagery is available. 

C. The pdf for I = 11�-p I I 2/11!§..I I 2 

As a special case of (A47), we have fr om (A35) and (Al8) and the fact that 

llff31l 2 and ll.1:.n- llp
2 are independent (cf §5, Appendix A), i.e., since 

x1 = lls 112 "'x2(n-p,o) 
-n-p 

we can set 

and find 

xijn-p)-1 
l',,,_ u". �.i __ _ ·;i :..... n ) _,_

(l+x)s+½n s=o s! r(½(n-p))r(s+½p) 
(A49) 

30 §A7 
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By virtue of the connection between I and U in §7, i.e., I = U-l, the pdf 

for unskill U follows at once from (A49) by replacing 'x' by 'x-l' on the right 

side and 'p ' by 'P ' on the left The range of U is (l ,w }.I U . 

The essential aifference in the distributions for Q and I is in the exponent 

of x: there is no summation dummy s in the exponent of x in (A49). The H-distribution 

appears to have been first studied in (Tang, 1938) and (Price, 1964); cf also 

(Kendall and Stuart, vol 2, 1973, p262). 

8. The J-Distribution 

The pdf for classic skill Smay be obtained from those of 11�112 and ll 2 
5:.n _ llp

by observing that I ltl 1 2 
=

2 2  I l�l1 + 11
5:.n
 _ l1 (cf (6.1)). In §5 of this Appendix

 p
the independence of the summands was established and we know that 

x = 1l�l 1 2 2 
/0 "'x2(p,tt) and x = 2

1 I le: 11 22 /0 "'x2(p,O). It remains then to 
-n-p 

deduce the pdf for y = x 
1
/(x +x ).

 1 2 

We will derive the general pdf for y = x /(x +x ) where the independent 1 1 2
variates x ,x are such that x "'x2(k ,tt ), x x2(k ,tt ). Following the 1 2 1 1 1 2 = 2 2
transformation procedure in §7 above, let 

The first transformation is motivated by the defining relation y = x /(x +x ) solved 1 1 2
for x and relabeling x as •y •. The Jacobian of the transformation is 1 2 2



Then 

where we have used the inqependence of x , x , and reset 1 2 y = y and x1 2 = y . The 2

required pdf for 2y is then found using p1 = x (k ,A ), p (k1 2 = x2 ,A ) with (A25}: 1 2 2

K 

Here, using (A6): 

[ ] 00 

_yx2ir+-2kl -\i 
K=f (-'---=½-'---) ___ -1-ye 

o r(r+½k1) 

r+s+½(k1
+k

2) rH-J< - l 
l 

y 
= (½) . [-]l -yr(r+½k1)r(s+½k2) 

32 

The gamma function integral in §7 of the Appendix can be used here with 

a =  l/2(1-y), 111 c-= r+s+ 1 :.t(k +k )-l. Thus1 2



r( r+s+½( kl+k2)) r+½k1-l s+I2k2+ 1 
K = ----- y (1-y)

r(r+½k1)r(s+½k2) 

Hence we end up with 

r(r+s+½(k1+k2)) r+½k1-l s+½k2-l 
( ft.50) y (1-y) 
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which is the pdf for y = x /(x +x ) where x � x2 (k ,A ), x � x  (k ,A ) and x ,x1 1 2 1 1 1 2 
2

2 2 1 2 
are independent. 

A. The pdf for S = I l�l 1 2 
/I jyj 1 2 

As a special case of (A50) we have 

x2 � jjE jj2/a2 � x2 (n-p,O) 
----fl-p 

and can set 

and find 



(A5l) 

By virtue of the connection between R and Sin §7 of the main text, i.e., S = 1-R, 

the pdf for residual unskill R follows at once from (A51) by replacing 'x' by 'l-x' 

on the right side and 'Ps' by 'P ' on the left. The range of R is (0,1). P is R 5 
also known as the 'non-central beta' distribution (Rao, 1973, p217). 

9. Calculation of the Moments of the H and J Distributions 

The mth Paw moment of y � H(k ,k ,A ,A ) is found from (A47) via 

µ� f ym H(yjk1,k2,A1,A2)dy= 

This requires the evaluation of 

r+m+½k1-1 r(r+½k1+m)r(s+½k2-m)
00 

dy =b �l +y) r+s+!2(kl +k2) r ( r+s+!2( k1+k2)) 

using a variation of the beta function integrand. Hence in general 

r(r+½k1+m)r(s+½k2-m) 
m = 0, l , 2, ... ( A52) 

r=o s=o r(r+½k1) r(s+½k2) 

'--------------------------------·--·- - . - - . .  
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1 2 1 2



As special cases of this, 

(2r+k1) 
(A53) (2s+k2-2) 

( 2r+k1+2) ( 2r+k1) 
(A54)

(2s+k2-l) (2s+k2-2) 

As further special cases, we have 

A. First Moment of Q 

In (A53) for Q = 11Xsll2/II£ 112 
, we set k p k n-p

 1 ,  
 
=

2 
= , "1 

= >- = 11Xsll2/o2 

n-p
, 

µ' - 00 r 

= e ½>- (½>-) [2r+p]
1 E � [n-p-2]r=o 

= 

1 -½>- [ ( ) + P f ( )] (cf. (A31)n-p-2 e 2f1 ½>- o ½>-

whence 

(A55) 
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This exists when n-p>2. 



B. Second Moment of Q 

In (A54) we make the same substitutions leading to (A55), and find 

µ2 = (n-p-2)(n-p-4) �=o 
-r (2r+p+2)(2r+p) -- ,--

00 

(½>.)r

since 

(2r�p+2)(2r+p) = 4r2 + 4r(p+ll + (p2+2p) 

we can write 

µ2 = (n-p-2)(n-p-4) [4fz(½>-) + 4(p+l)fl(½>-) + (p2+2p)fo(½>-)J 

using the functions f (x) defined in (A31). This may be reduced ton 

, >-2 + (p+2)(2>-+p)= (A56)µ2 [n-p-2] [n-p-4] 

1·his exists when n-p>4. 

C. Variance of Q 

In general the variance is given by 

36 

-½>-

-½>-

(A57) 

Using (A55), (A56) in this we have, on reduction, 



2[A 2 + (n-2)(2A+p)] 

[n-p-2]2[n-p-4] 
(A58) 

This exis ts when n-p>4. 

D. Firs t and Second Moments of I 

From (A53 ) for I = \ 12/ I I�112 11¾-p , we s et 

and find 

) -½A (½A)s 
oo 

= (n-p e L (A59)
s! 2s +p-2

s= o 

and from (A54): 

2 µ ' = 
(½A )s 

(n-p)[n-p+2]e-½A; • ___1____ (A60)
- J [- s ! [2s+p-2 2s J+p-4os 
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µ2 is bes t found numerically in this cas e, us ing (A57), (A59), (A60). The m om ents 

µl , µ2 exis t if p>2, p>4, respectively.

The mth raw moment of y � J(k1, 2k , A1 , 2A ) is found from (A50) via 

1 
µ� = f ym J(y\k l,k2,A l,A2) dy 

0 

This requires the evaluation of 

l r+ m +½k1- l  s +½k2- l  r(r+ m +½k1)r(s +½k2)
f Y (l- y) dy = 
0 r(r+ s +m+½(k1+ k2)) 



using the beta function. Hence in general 

(A61), m=O, l ,2 ... 

As special cases of this 

(A62) 

E. First Moment of S 

In (A62) for S = ll!�.112 /llt.112 , we set 

== = =kl p, k2 n-p, >-1 = >. JJ�JJ2 /a2 , >-2 0 

and find 

(½>-{ • [2r+p] (= µ (A64)r ! 2r+n s ) 

F. Second Moment of S 

In (A63) we make the same substitutions leading to (A64), and find 



\)r (koo µ 1 = e -k2\ 

r=o r. 2 (A65)r -;;-r 
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2

The variance of S is best found numerically from (A57), (A64), (A65) for any given 

set of n, p, \ values. Some approximations may be possible, as we show below. 

G. First Moment of S for Small Signal to Noise Ratio\ 

Expanding the exponential series in (A64) and retaining only first powers 

of\, we find 

(µ =) (s =) µ - (1-�) .E. + � (p+2) (A64a)s 1 
1 

2 n 2 n+2 

As\+{), µ + p/n, as may also be seen from (A64). If we write 'S
0
 

1
' for p/n, and n 

  

is large compared to 2, then (A64a) becomes 

(A64b) 

This reduces to the exact classic skill's mean for the case of zero signal to noise: 

(A64c) 

H. The Second Moment of S for Small Signal to Noise Ratio\ 

From (A65), expanding the exponential, and retaining only the first power of\, 

µ' - (£.:!:£) [E. +A�] (A63a)2 n+2 n n{n+4) 
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I. Variance of S for Small Signal to Noise Ratio A 

Since 

0 2 
= 

s 

We have from (A64a) and (A65a), on retaining only the first power of A, 

o2 ; � [£ - 2As n ( n+2) n 

2(1-S ) (l+p+S ) o o 
= [S - 2A (A65b)n+2 o n+4 J 

This reduces to exactly to the classic skill 1 s variance for the case of zero signal 

to noise: 

2(1-S )S 2(1-p/n)(p/n)
o2 

= -�-0 0 = ------ (A65c)s n+2 n+2 

10. Classic Hindcast Skill and the Multiple Correlation Coefficient 

There is a general intuitive connection between the ideas of linear regression 

and multiple correlation that would lead one to suspect a correspondingly general 

formal connection between all the salient parameters in each of these two domains. 

In this section we shall show the exact formal correspondence between classic 

skill S and the square R2 of the multiple correlation coefficient, and also the 

explicit connection between the signal to noise ratio A and the population 

correlation coefficient R2 
• 

..,. , repare for the demonstration we rewrite (A51) as follows: 



00 r(½(n+2r)) r(½(p-1)) (½\x)
r 

(A66) 
r=o r(½(p+2r)) r(½(n-1)) r! 

In (Kendall and Stuart, vol 2, 1972, p358), given as an exercise, is the following 

form for the pdf of the square of the multiple correlation coefficient (using their 

notation and taking the liberty to make some rearrangements and to open up their 

beta function, so as to facilitate the comparison): 

dF = 

00 r(½(n-l+2r)) r(½(p-1)) 
(A67) 

r=o r(p-1+2r) r(½(n-1)) r! 
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Ovserve that certain terms can be cancelled in (A66), such as r(½(n-1)) and 

r(½(p-1)). These may also be cancelled in (A67). They were put in by Kendall 

and Stuart ( 1  K and S 1 ) to 'pretty up' the results, and we followed suit. When 

a comparison between (A66), (A67) is made in their simplified forms, the following 

correspondences are evident: 



Multiple Correlation and Classic Skill 

Kand S Here 

n-1 

p-1 

R2 

(n-p )!f 

n 

p 

X 

;.\ 
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In this way we discover the connection between our signal to noise ratio;.\ and the 

population correlation coefficient R2 : 

I l�l l 2 /o2 = ;.\ = (n-p)_!f (A68) 

There is an important proviso regarding (A68), namely that _13_2 by construction is 

always bound by O _13_2 2. .:::_ l, whereas\ clearly can exceed l, as a perusal of the 

linear regression diagram in §6 of the main text shows. We can fix I 1�11 

and imagine the vector£ to have any a2, large or small. In terms of our dynamical 

studies in §2 (particularly recall (2.5)), the signal I IM.I 12 of the retained 

drivers and the noise a2 (of the discarded drivers) may be independently chosen. 

It is particularly this fact and to a somewhat lesser extent the specialized cast 

of multiple correlation theory in the domain of statistics that suggested 

retaining our independent development of the theory of L Still another corres-­

pondence can be set up using a result in (Rao, 1973, p600). 
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Appendix B, Finite-term Formulas for Cumulative Probabilities 

The numerical determination of the a(Y:za), a(l-½a) significance levels for 

a given performance skill Q, S, or I, (as in §11) is facilitated by the formulas 

presented below. The formulas are based on the fact that when n-p or p (as the 

case may be) are even integers, the indefinite integrals of the densities 

PQ, P , P presented in §8 can be expressed as the results of a finite number of 5 I 
elementary operations. A computer program based on these finite-term formulas is 

much faster than one that integrates the densities using, say, Simpson's rule. 

The tables below are based on these finite-term integrals. It is found that 

tabulations of a(05), a(95) for n up to about 50 can be handled this way before 

numerical problems of accuracy arise. Beyond n = 50, the determination of 

a(Y;za), a(l-!�) for a = .10 (say) must be done with Simpson's rule and double 

precision, or some other integration procedure with controllable accuracy, such 

as Runge-Kutta schemes. 

l. Formulas for Canonic Skill Q 

Starting with (8.1) we integrate PQ(xln,p,A) from x = 0 to some arbitrary 

value y. This requires the evaluation of the x-dependent part of PQ in the form: 

y r+½p-1x(YIP,A) = J dxHr o (l+x)r+½n 

Make the substitution of variables: l + x = u2, then dx = 2u du, and so 

X 
r+½p-1 

-
_ ( 2 U -

r+½p-1l) • When x = 0, u = l. So 

where we leave the upper limit u arbitrary, say of value y. 



Let p/2 be an integer. Then with 

n.(n-1) ... (n-j+l) 

l.2.... j 

So 

H ( Ir Y p,n ) = 

½p+r-1 1 1 •'" (�p+ _ r-1) (-l)�p+r-J-1� Jj=o 

[( )j+l-(½n+r)l+y 
(j+l- ½n+r) 

-1] (Bl) 

Therefore 

r(r+½n)-½A 
00 

J PQ(xl n,p,A)dx = e I • H (y Ip, n) (82)r
0 r=o r(r+½p)r(½(n -p)) r! 

½Pan integer, n-p>l 

" +p 
Q =-- n-p>2 (83) 

n -p-2 
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I n applications of (B2), one should keep in mind the important option of using the 

representation "= pi for the signal to noise ratio (cf §9). I n our preliminary 

study of (82), summarized in the tables below, p, n, "were treated as independent 

variables. I n practical applications, it is suggested that the representation 

" = p" be used since, as explained in §9, I is then more or less independen t of p, 

and so n, p, "are independent parameters. These comments of course hold for the 

formulas below. 



2. Formulas for Ineptness I 

Starting with (8.4), we integrate P (xln,p,A) from x = 0 to some arbitrary I

value y. This requires the evaluation of the x-dependent part of P in the form: I 

J (y IP, n)
r 

It is seen that this differs from H (ylp,A) only by the interchange of (n-p), p,r 

and the absences of certain r presences in (B4). To evaluate (B4) we used the 

assumption that n-p is an integer. Hence 

' p > 2 

00y -½ r(r+½n)
J PI(xln,p,A)dx = e ------. --. J (ylp,n) (B5)rr=o r(r+½p)r(½(n-p)) · r! 

½(n-p) a positive integer, 

l 
(p+2r-2) (86) 
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3. Formulas for Classic Skill S 
Starting with (8.7), we integrate P (S x/n,p,A) from x = 0 to some arbitrary value y. This requires the evaluation of the x-dependent part of P in the form (with the assu�ption S that n-p is even): 

0 

J xr+½p-l (1-x)½(n-p)-l dx
Lr

(y/p,n) = 

(87) 

Hence 

--

0 
----�-PS(x/n,p,A)dx = e E 

. --

r ! 
½(n-p) a positive integer 

(½A)r -½A p+2r S = e . [-] 
n+2r 

J
Y 

-l2A r(r+½n) 

o r(r+½p)r(½(n-p)) 

00 

(88)r = 

00

E 
r=o r ! (89) 
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CLRSSJC SKILL (SJ 

15 

LAMBDA= 0 

=NP 

" 

S - 6 



J. !E 01 

1 .OE 01 

S.OE OD 

8.0E 00 

CJ) 

7.0E 00
LL 

0 

>- 6.0E 00 

5.0E 00 

0 'LOE 00 

3.0E 00 

2.0E 00 -

1.0E 00 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

CLASSIC SKILL (SJ 

---- --- - - - - · - -----

NT 4 5 7 10 15 

LAMBDA= l 

=NP 3 

S - 7 



1.lE 01 

LOE 01 · 

9.0E 00 

8.0E 00 

Cf) 

7.0E 00
LL 
0 

>- 6.0E 00 

S.OE 00
co 

co 

0 

1.0 

(S) 

4.0E 00 

3.0E 00 

2.0E 00 

1.0E 00 

0. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

CLASSIC SKILL 

---- --- - - - - - - ---

NT 4 5 7 10 15 

=LAMBDA 2 

=NP 3 

S - 8 



/ . · ·.. .. . . - _, � -- -- --
- ---

--

1. lE 01 

1 .OE 01 

S.OE 00 

B.OE 00 

(f) 

7.0E 00
LL 

0 

>- 6.0E 00 

5.0E 00 

1LOE 00 

o_ 

3.0E 00 

2.0E 00 _,,,,,,- ----- ---- .............__�- -. - - . . - _.,... _ 
/ - . . . . . � ..- --- . > / 

/' 

/ . ------- '>- ....1.0E 00 

-
.. ---- ----- - ---== - - -

0 • OE 00 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

CLASSIC SKILL (S) 

NT 4 5 7 10 15 

LAMBDA= 5 

=NP 3 

'\ 

\ 
0.9 1.0 

• 

S - 9 



----
. � / . . .  / 

-----

1. lE 01 

1.0E 01 

9.0E 00 

 8.0E 00 

en 

7.0E 00LL 
0 

J

>- 6.0E 00 I 

I 

I1--l 5.0E 00 

. co 
4.0E 00 

3.0E 00 -- -
····. r I 

2.0E 00 

/ 
/ 

. , . . x./ /• \ 
/ / / 

\ 
1 .OE 00 / r 

,,,- / ' \ _.- /
- -:--:--: . . . . . --- _:_').l.- -- ... -.::. -:.. -- -- ,.,.

0 .OE 00 -1-----�.....::--..:-�;;__;:...;;;;::��=;:::::::::=::::;:::____,,-----.------r---'IL, 
o.o 0.1 0.2 o.3 o.4 a.s a.6 o.7 o.s o.s 1.0 

CLASSIC SK I LL (S) 

NT 4 5 7 10 15 

LAMBDA= 10 

=NP 3 

. ,

S - 10 



SJG�IFICtNC[ LEVELS FCR CANGNIC SKILL Q 

LAMBDA: 0.000 SIG05 
p -+ 

----4-------r,-----·---s-----nr-----1��-----"20---·---5-o-

o 0.288 
a o.1s1 c.�s! ------o�a97----- ·-··-··-·--·--·-· ·---·--------- ---------- ---- ----- --1 c ------ c.1!rn----- o.331

14 0.067 0.161 0.372 0.719 
20 0.043 C.108. 0.203 0.■ 336 0.819 

- r o ;i_ a �u ---o-;"3 s a--�-.-as2---,-5u-- -e. u 2 , ·n .-o6 5----..0 • TH.
0.111 0.321 0. 77 7.so J.015. 0.036 0.063 c.094.

n 

-l-

LAMBDA: 0.000 MEAN 

p -+ ··.4 6 s·----.-- · --10- ·.
6 

14 20 30 

n 

-l-

a 2.uco. 2.000 
10· 1.000. 3.CGO. 3.ooo 
14 o.soo l.GCO. 2.000 s.ooo 
20 Q.286 a.sou. 0.800 1.250 ·. - --·7 o----o � 1 6 7 - -a.2n ·----·o. 4 Go ----o.556 - --

3.500
f.o o c · ---- o-·- ----

2. so 
---

50 0.091. 0. l lf 3 0.2 a o. o.263. o.41i. 0.114 1.667 

LAMBDA: 0.000 SJG95 
p -+ 

6 10 . llJ 20 
6 38.49'1 
8 6.388 57.989 

n 

-l-

---- ----- -----·--10-- --"3.022·----c;.245- -- --7,.-qR4·. ---·
14 1.391 2.685 5.529 14.911 
2Q 0.752 1.■ 22J loP.99 2.■ 978 9.■ 231 

-·3 u---o . .1122---0.l21 -·-,; a1�1--�1.114-----2·�-o 11 ---��--s-4cr.
�o 0.224 o.31� o.413 o.s19. o.1r,9 1.2as 3.060 

Q - 0 



SIGNIFICANCE LEVELS FCR CANO�IC SKILL 

LAMBDA: 0.200 SIG05 

4 6 10 20 30 

6 0.303 
a 0.165 o.&o3 

10----· 0.114 0.342 0.920··------··· 
14 0.070 0.187 0.3A2 0.733 
20 0.045 0.112 0.208 0.343 . 0.831 -3 □----o. O 2 a-- ---o. o 6 7 ------· -o-.T19----t, ;1a4---o;36 30
50 0.016 0.037 0.064 0.096 0.173 0.782 

LAMBDA= 0.200 MEAN 

-,,---- ----·. 6-------g 

6 
8 2.100 ?.100--- - ·1. o s a--·-- · ----- 3 .1o □----- -· · ---·· ----· -------- - ··--- ---- --·-·--·....-- ---··--nr-- - 3. 100--

14 0.525 lo033 2.050 5.100 
20 0.300 0.517 0.820 1.275 3.550

-� u---rr·.- n s- -·- -u·. 2 a 2----0�·4-rrr -----c �--St r-----r; o rr-,---·---.? ;15-,.0
�o c.095 o.148 0.20s 0.260 o.41B 0.121 

LAMBDA= 0.2cc SIG95 
. s- - -- .. i4 -6 10 20-

1.678 

30 

6 40.419 
8 6.706 59.9,2 

10 ·-- 3.1730 9.552 79.421 
14 1.460 2.775 5.667 15.209
20 0.769 1.261 1.946 3.038 9.36?.

-- -o-.a 9 3---y�-rci r- ··-· 2. 1 of. -·-·--··5 6 o 3 -�□--0-.4430-·-- □.648.0 .
5o 0.235 o.326 0.530 o.1ao 1.301 3.081 

- -

- -

Q - l 



SIGNIFICANCE LEVELS FOR CANC�IC SKILL 

LAMBDA= 0.300 SIG05 

··--- - ----·- .... ---ti--·----- ------i 0-------14--- -q- s.
6 0.310 

8 C. 1£,9 o.e,13.
---,-u-- ---0.111. -·-- ·-·c.348. c.931-·-

14 0.012 0.190. 0.387. 0.741 
20 0.046 0.114 0.211 0.346 0.837 

° ----.-3�--1r;u"2"---o.o68------ ;-12i-· --11·.;·rn·e,---cr;366___ - ··-··---- ---9. o· o-; 8£:.s-·-·----

so 0.016 o.o3a 0.065 0.091 0.174 o.332 o.785 

LAMBDA: 0.300 MEAN 

. -· .... 4-- -- - . f, - . 

6 

B 2.150 2.150·.-1--·10. .015. 3.1so ··3.150
14 o.537. 1.oso. 2.015. s.1so.
20 0.301 o.s2s o.a30 1.2s1 3.575

· --····· --"2"-n3.-u---u.1 79- ·-··-·o .-2a6-----u.41s----··o.;572----·-1. o 21·- 2�537 

so c.o98 o.1so 0.201 0.211 0.421 0.725 1-683 

LAMBDA= Ci• 30 0 SIG95 

-· ·.·-·--4----- ·-·-- �·---··---g. - 10. r 
6 41.383 
8 6.865 60.889 -- --1o-·--3.�47 -----------·-·-- ---------- ------ --9. ·. · · ·... 1 Co -- --Bo.390------ :.

14 1.494 2.819 5.736 15.358 
20 0.807 1.281 1.970 3.067 9.4?8 

--·:rn·--·--cr.-4 53 ---- !J". - -- -·-0·;1:304-----r-;2 :rcr----i �·121------s--.;·6·3·r-.658 
5 o 0.240 o.331 o.428 o.s3� o.1as. 1.307 3.092 

-

Q - 2 



SIGNIFICANCE LEVELS FCR CANONIC SKILL 

LAMBDA= 0.500 SIG05 

-----------------. 4------- ... -- 6-

6 0.326 

8 0.177 0.€33 
..... 0. 9 5 4.

. ----- --
-- ---- 1 Cl O. 122. . C. 3 5 9 

14 0.016. c.156. o.396. o.1�s.
20 o.o'+B 0.118 0.216 0.353 o.849. ----·.o. 030----ri ;o11---u-�T2A----.c--;rr:9·---o.311.-�o. 0.873 
50 G.017. 0.039 0.067 0.099 0.177 0.335 

LAMBDA= o.5GO. MEAN 

1 

··-· --------

0.790 

6 

8 2.250 £0250
----,0

-------
1� 12s · - ·. -- -- --- ------ -----··· · - -----·---- ---

-- 3.2!:io-- --
-3.2so-

- -
14 o.563. 1.os3. 2.125 s.2so.
20 0.321. 0.542. 0.850 1.313. 3.625 

r- -·3:r---·---cr; 1 P.B - ------•·u-. 2 95----·-o-� 4 25----·---c;·.-saT--- .-o� n-----z-; s0·r-
so 0.102 o.1ss 0.212 0.216 o.426. o.1s2 

LAMBDA= 0.500 SIG95 

----- ------------ ' 
4 - .. --- 6 

6 43.312 
s 1.1eo i2.n24 

10 3.395 . 10.011 - .. 82.329 --------- ----- ---
14 l.5ll 2.907 5.673 15.655 
20 0.843 1.321 2.017 3.126 9.559

232---2.1 so- --·-=.;Ee6-·yo. u; n3----u. 6 78 o �-q2s- 1. 
so. o.2s1. o.341. o.438. o.54�. o.796. 1.320 

1•694 

3. 113 

-

Q - 3 



SIGNIFICANCE LEVELS FGR CANO�IC SKILL 

0.100 SIG 05 

6 0.342 
20 

8 0.1�6 0.654
--�u--·--·0.129-- -·--0.371 · - ··-- o. 977-·-----------

14 C.08G. 0.?.03 0.406 G.770.
20 C.051 0.122 0.221 0.360 0.861 

---3 er----�·; 0·�2- --- o. o 13 ---- o-; r27- ---1r;·19 3---u ;316---r.-a e------

s o 0.018 0.041 o.068 0.101 0.119 o.338 0 • 795 

LAMBDA= 0.100 MEAN 

· 3 o·· 4 6 
6 

8 2.350 2.3�� 

1cr··-·-1.11s. 3.350 3.350 __________ --------------
14 0.567 1.111 2.175 5.550 

20 0.336 0.558 0.870 1.337 3.675 

o •·196--�--a-� 3 o s----cr.7♦ 3 s·---cr;s9q·---r.o5o·---2·�-5 a1 � o 
so 0.101 0.160 0.211 0.282 o.432. 0.739 

LAMODA= 0 • 70 0 SIG95 

70 14 :.:o 
6 45.�43.
8 7.492 64.760--1-u--·--

3� 54 r·-·-1 C. 
---- _____ --------------- ----------------------316 84 • 267 -

14 1.628 2.994 6.009 15.951 
20 0.879 l.3t0. 2.063 3.18� 9.691 

25"15-----2·.-1 -ao-- --5·;74·.30 ·--cr;4 y3 o�69B -----o�·cr11 6----1�· .
so 0.261 0.351 o.448 o.555 o.so1 1.333

0 - 4 

.. 



SIGNIFICANCE LEVELS FCR CANONIC SKILL 

LAMBDA= 1.000 SIG05 

· -· -
------ ... 4--······- a 
6 0.367 
8 0.200 0.685 

-10·--- 0.138. Cl.389 - ··1.013.
14 0.086 0.213 0.421.
20 0.055 o.128 0.229 

·---�- --c. 034-·---G �o 1r --o 1"3r--.,,o. r.:r9�--o .3a4..-

-- -···-
1

o· -- - · · ······ · -- ---·.14 · ···-- o ··---, 

0.792..
0.310 o.879.

o .895.

- -

50 0.019 0.043 0.071 0.1G4 0.183 0.343.

LAMBDA= l • 0 0 0 

•··-·-,4 2tl 50 

6 

A 2.�00 2.soo 
-1u-··· -··.1.2:.0 ·· ··--·3.soo····-··- �.soo···-·. ·

14 0.625 1.167 2.2so 
20 0.357 o.se3. 0.900 

--:5 cr----u·.;2·0 8-----o-� 31s·. o ,;,r5 o.
so 0.114 o.167 0.22s.

LAMBDA= 1•000 SIG95 

--···-----··. 
4-····· 6 

6 4B.142 
6 7.958 67.665 

10 3.7�7 10.771 87.176 
14 1.725 3.124 6.213 
20 0.931 1.418 2..132 ·� o o �-522-·--0� 1n·--·o:··n ir-
so 0.277 0.366 0.463 

----- ----···---- ·.

5.soo.
1.375 3.150.
o .6 n--·1�071-·-·--2.52 :>.
0.203 o.441 J.750.

14 

16.396 
3.?.73 9.887

-1•2a 9---2. 2 2 '+-·-- --·s.a 2 4·-

D.570- 0.823 J.352 

1.122 

--- ------

3.167 

Q - 5 



SIGNIFICANCE LEVELS FCR CANONIC SKILL 

LAMBDA= 1.500 SIG05 

--•··-··4--··--- ·5----·-··-······0·--··· --10--------·14-- · ···---·;20 . -----30·-g-
6 0.412 

s 0.224 o.74J --- ---1 u·-· . -·0 � l 5 5 -- .. - G. 4 ;:>::, -- ---1. C 73 - ·- . .... · ·-- --······· 
14 0.096 G.230 0.446 0.831 

20 0.062 0.138 0.243 o.388 0.909
-----r3 u---o·.-o3s--·--o. o s3---o .-,-3cr- ----r; �-20R---o;3•37-----,,0...'317------·-- -. 

50 0.022 u.046 0.015 o.10� o.1s9 0.352 o.s11 

LAMBDA= 1.500 MEAN 

-----·- •-· ----· - •· . s· ··-- ····- -

4 6 1 0 14 20 30 
6 
8 2.1�0 2. 7!:G0
o-· ... ···1.375

. ·1 
3.750 3.750 

14 0.6880 1.250 2.375 5.750 
2 i) 0.3930 0.625 0.950 1.43& 3.R75

Ci� 341---·0--o-.-ns0---·o-;6 3·0,y---1. 1 o 1030 0 • 2·2 90 .: • 688 
50 0 • 1 :i'.50 0.119 0.238 0.3C3 0.456 o.7680 1.750 

LAMBDA= t.5000 SIG95 

···- -ii--·-·-- r,---··-- s0 -ru--·-·---1q0 3 o·-·0zo 
6 52.979 
8 8.727 72.511 

-- --- ----· · ·--
9 2 • 027

-· ---·- -- -- · -·---- ... ···- --· ·----·---· -·-- --·--- ·--···-
1 1 • '5 2 4 

.. 
1C 4 � 

-
112 . 

14 1.884 3.337 6.550 17.134 

20 1.015 1.514 2.246 3.418 10.213 
-··3u----u .--s-oR----o.115-·----r.-030··----r�-:H6---z.296·-----':l·;"962.0 ____________ 

so 0.301 0.390 o.4sa· o.59� o.eso 1.384 3.220 

Q - 6 



SIGNIFICANCE LEVELS FCR CANONIC SKILL 
· · ·· ·---• ··--· ---- - - -------

LAMODA= 2.000 SIG05 

---·-·-··-·--·-·--
4 6 

-----·--· 2 0 ---

6 0.460 
8 C.251 0.797 .- . -· -------·-· -···----------·· -· - . 

1 O - 0 .1 7 4 C •4 5 3 1 • D 5 
14 0.10s 0.24s o.472 o.869 
20 Q.0&9 0.149 0.258 Q.407 Q.940 ------3 o�-�o • o 4 3--- o • o 9 o·-·--·o • 14 s ---o, •21s ----o • 411 o.• 9 3 9.
50 0.02s 0.050 o.oso 0.114 o.196 o.360.

LAMBQA: MEAN 

------·---··-·q··-----·- -· - 6---·----··---s.
6 

s 3.coo 3.cro 
o u :i --· ·- · · ·· 4. o oo----·---- --------···· ·····-- ··----------· nr---- · 

1 �so o · 
- 4. 

14 o.1so 1.333 2.500 &.ooo.
20 o.429 o.6&7 1.000 1.soo 4.000 

- ·;250--··· 0;3ex·----u.-so-o. ;·&r,7----i-;14-r3----,2-;751J.--""3 o-- -u
50 u.136 c.190 0.250 o.316 o.471 o.786 

LAMBDA= 2.000 SIG95 

4 6 - 8 14 
6 57.823 
8 9.487 77.355 

-· 1 0. 4 • 1♦ 6 0. 1 2 • 2 73 96.BflO 
14 2.c39 3.548 6.885 
20 1.097 1.607 2.359 10.538 

f • 0 5 9·· --3 o----o. 61 :;-- - -·- 0 • & .2 4. 1 • ei a o ---· 1 � 4c 2 ---·- . 2 • 3 6 8 -- . 
�o o.325 o.414 o.511 o.619 0.876 1.416 

o-- .. 3 

0.832 

1.778 

--· - - -

3.286 

Q - 7 



SIGNIFICA�CE L[VfLS FOR J�[PT\ESS l 

---------- ------------------------------------------ -------· 
Lfi�£3DA= 0.000 X05 +p 

� 2•J 3 ('4 (; lC 111 
----------·- ---·------

f, c, • G ,'. E., 
8 0.157 0. 0 1 7. 

10 (I.� .H 0.108 0..01 3 

1 '+ LI."/ 1 9 G.372 o·:-Tbl o.oq 
1. ! .3 0. G .1'11.9. c.s21 0. 336. C.108.2 0 
2. "!-7 0. 1.5c;5 1. 14 7. ().852 C. 4 e.2 r}. 1 �: 0 30 

4.468 3. 1. 7 u 2. 4? l. 1. 9:� S 1 • .301 2.111 J.327 :iu 

L/d·HJOA = 0.000 M[t,r� 
+ 

4 ,. ,, " R l.� i4 ._,, 30-------------·---------
6 1 • 6 C' 0 

n 
t 

8 2.:. C· 0 D. 5 C 0 

n 

-l, 

1 G 3 • (: (; 0 l • C' CG. C. 3:�3------
14 5. 0 0 G. 2. 0 vu l.• lJ t; ,,. o.:'>oo

20 8. (, 0 0. 3. 5 (, i). 2.GJO 1.;,s:, 0.5C:O 

30 1:5. 000 !:, • LI�. Cl. 3. 6£.. 7. �-5�0 1. 3::,3 0 • �:. �' h ·----------
50 25.0GO 1 1 • V C j 7.JJO. 5.0liO 3. Ci ( 0. J .667 0. 714 

Ll.l·i80A = :i.ooo X'}:i 
+ 

4 !, 8 ir, 14 2': 3 0 

6 3.4 72 

8 c..3f18 1.714 

n 1 u 'l.�45 3.022 l. l l S 

,j, 
14 14-:-911 :j -.--�) ;� '1 2.n1':>. f. 39 1.
2J 2.3.376 9.23C 4.ci;;5. 2.978 1.22(
30 37.46� 1 !:i. 3 h 5 8.611 !'i.54il 2.794 1.174 
50 h5.614 2 7� 61? 15.9'1� l.O • 6.4 .4. S.869 3.Cbu 1.288 

I - 0 



SIGNIFICANCE L[V!:LS FOR I NE PT i�[SS 

LAM�IDA= 0.200 X05 

6 0.

4 
 C,?. 5 

E, 8 l C l 4 2(1 30 

8 0.149 0. '.l l 7 
1 0 

1 4 
0.315 
o. se s 

'.l. 1 U 5 
!: • '.�f, 0 

0.013 

0-176 o.oe,� 
20 1.268 o.793 o.514 C • 32 <J o.i 01 
30 2.258 1 • S 4 4 1. 12 iJ c, • B� � 0.475 !1.,.78 
50 4.258 3.069 2.303 1 • Rf< 8 1-283 ().H,':l 0.325 

LA �!GOA= 0.200 �l[AN 

!, 

'¼ 

•J. r"J 5 2 
f, 8 l Cl 1 " 20 30 

B 

10 
14 
20 
30 

1.9(;5 
2. 'i �. 5 
4.7�il 
7. 1,1 3 

12., 71 

r.. 4 f 4 

J.9t.7 

l • � �. � 

3 • 3/H, 
5.bC'j 

Q.325 
0. ,_r7 ·' 
1. Y !) l 
"!_,. 'j 7 7 

n • 4 r) o 

1.225 

2 • 4 !" 1 

IJ. 4 ° 3 

1 • 3 1:., P. 5SC 
5J 21-9!i7 10.u42 b • .':\21:i 4.�J2 2.'�Sb lob5u 0. 71 0 

LA :�BDA = n.2cc X95 

4 6 8. 1 0 14 2ll 3:)
------· 

6 

8 

3. ?, (14 
6. 0 78 l.f.59 

l J 
1 4 

20 

8.7<>6 

14.1&7 
22.241 

::>.9�4 
<j • 3 4 9 

f.9;:,9 

J.0P.-7 
2.b2Q 
4. f. ti 5 

lo.Sf.4 
2.920 1.:? 03 

3J 

50 

35.j43 
b2.427 

1 :+.H:4 
26.713 

ti • ..',95 

15 •:, 52 

5. 4:.', 9 
10.455 

?.754 
:,.787 

1 .1 £,;( 

3.0..',0 1. 279 

I - 1 



r

s I G rn F I C t.J C E LEVfLS F 0� INEPrnESS 
---·--- --- - ---------· ·--· 

LA �i80A= o.:iao XO C; 

4 r, 1[' 14 ?'.J 30 
6 O.u24.
8 J .14 E,. C.016.

1 0 G.308. 0.1C3. 0.012 
14 C, • b 6':i o.3�5 o.174. 0.0&'-, 
20 J.239. o.1s1. 0.508. r.32e,. 0.106 
30 2.201 1.520. 1.1cs. C.8?.7. 0. 4 71. C,.173
50 4.lE,2. 3.G.?.l 2.334. l. 8 7 0 1. 2 i4. ri. 7Sb -�ti"i+ .. 

LAM[JDA= 0. 3 0 0. M[AlJ 

----·---- -·- ____(, 

6 Q.'}29 

8 1.�57. 0.476 
__ !. a-'--_---";,_.1 a & ____G •....cCJ..:::i..::2 ______ 0_. 3 2 1 ______ _ --------------------

14 4.�43 1.YC4. O.S64. G.485.
20 7.42S i.331 l.S27. 1.213.

-�3�0 ___ 12. 0 72 �;, 111 3.�_33. 2 •'+2_7'---- 1. 3-�-�---�□ • ?_10 _______ 
21.358 10.470 &.745. 4.854 2.937 1.642 0.101.5J 

Xqc: LAM[30A= • J 

4 8 l 0 ·--------- --------------·--·-----

6 ,:,.223 

A 5.9 30 1.632 
10 8.581 2.876 1-074.

-1�. 13.840 �.2Gl 2.567. l.3�C.
20. 21.696 8.7�3 4.74b. 2.891. 1.195 
30. . 34.7b� 14.(,21 8.2�6. �.3b5 2.735. 1. 1 :=-, 7 ___
SJ. b0.�96 26.276 15.jnQ. lu.332 5.746 -� • 0 1 S 1 • 2 7 5 

.. 

I - 2 



SIGNIFICANCE LEVELS FOR l�EPTNESS 

o.soo X051

4 14 20 ____..:::5____________ f! ___________ __ l_i:!.__________ 30 

6 0.023 
a o.13� o.Gl�1

1c o.2s�---·- ··---·-------···. 0.100···-----··- ---------·-------o.�12- ··- ··------··. ------ ---------- ------------------ ··--··----- --------·-· 
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