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Abstract

There are three main problems encountered when applying linear regression
models to geophysical time series, namely the problems of: model significance,
model hindcast skill and model forecast‘ski11. In this note we solve the first
two problems by the systematic introduction of various hindcast performance indexes
of the Tinear regression model, such as canonic skill Q, classic skill S, and
ineptness I, and by deriving their probability density functions on the assumption
of gaussian noise governing the residual vectors. The notion of signal to noise
ratio A is introduced into the analyses of the problems of significance and skill,
and it is shown how A, as a parameter in the probability density function for
Q, S, and I, can be used to generate confidence intervals for its estimation. As
a result, by means of A, it is possible to unify the problems of model significance
and model hindcast skill in a way that suggests various basic strategies to
maximize model hindcast skill subject to the constraint that a model be significant.
In this way a framework for linear regression hindcast theory is provided on which

the solution for the third main problem may eventually be based.
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MODEL SKILL AND MODEL SIGNIFICANCE

IN LINEAR REGRESSION HINDCASTS

by

Rudolph W. Preisendorfer

11 Introduction

From the point of view of a physical oceanographer or a meteorologist, the
concept of Tinear regression provides an interesting mixture of dynamics and
statistics in the sense that the usual form of a linear regression equation,

namely

ye BB Ty (1.1)

holds simultaneously within it the algebraic essence of a dynamical law: y = X 8,
and a random perturbation € of that law. Thus, as we shall briefly illustrate
below, we may envision the matrix X as embodying a generalized force and B as the
transfer function that converts X into an observable field y as seen through an
intermediate haze of noise €. In such a dynamical context, X and B may rigorously
take on a great variety of forms, ranging from simple ohm's law quantities in
linear electric circuits, to the appropriate parts of solutions of linear wave
equations arising in oceanography and meteorology.

In the present note we shall prepare a framework for the general solutions
of two of the three main problems arising when (1.1) is directed toward the
description of linear dynamical processes in random settings. In practice these

three problems arise in ways which we shall now briefly describe.
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A. Estimating The Model Parameter B

The n x 1 vector y in (1.1) is imagined to be a set of n observations of a field

which arises through the action of a set of driving forces situated at p locations

in space, at each of which n observations of the force are made. Let '5j' denote

the n x 1 vector summarizingn observations of the forcing field made at the jth

point. Then write X = [54 Xo e ﬁp], so that X is an n x p matrix. For example

the 5&5 can be p time series of sea level atmospheric pressure, and y can be the
corresponding time series of sea surface temperatures at a point. By means of a

least squares procedure, to be reviewed below, we can estimate the components of

the vector B, using the observed driving field X and observed resultant field y;

thus if éj is the desired estimate of g, we find:
8= 07Ky . (1.2)

Here 'T' denotes matrix transpose. If there is no noise, i.e., if in (1.1),
e = 0, then on substitution of y = X 8 into (1.2), we would find é_= 8. In this
case, the least square estimation technique allows us to determine exactly the
essential physical parameter B of the linear regression model (1.1) in the
absence of noise.

When noise is present in (1.1), then the solution (1.2) for é} on

substitution of (1.1) for y, becomes

Now the physical parameter vector g is masked by the noise vector (x X
One no longer is certain that g really exists as a nonzero vector. Indeed,

setting 8 = 0 in (1.1) and (1.3) suggests that what we could observe is simply
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pure noise; and for any finite sample of size n, no statistical test can absolutely

assure us that the observation y is not pure noise.

B. Problem of Model Significance

This brings us to the first main problem arising in the use of (1.1) to
study physical systems in nature: how does one decide, from the measurements y, X
and knowledge of the statistics of e, that B8 # 0?7 This is the problem of model
significance. The term 'significance' is used to indicate that we cannot decide
with certainty that g # 0, but only to indicate with some stated measure of
confidence (e.g., on the 95% level) that g # 0. If we find that g # 0, then we
can view y = X 8, with some measure of confidence, as a non trivial (i.e., a not
completely noisy) indicator of a law of nature worthy of closer scrutiny. For
this is our principal attitude toward (1.1): namely that (1.1) is merely a
preliminary indicator of a possibly significant mode of dynamic behavior of a
portion of (say) the atmosphere/hydrosphere fluid system. This attitude does not
rule out the possibility that the relevant law itself contains random structure;
nor perhaps that the most we could ever know about the system would be certain

simple refinements of (1.1) itself.*

C. Model Skills

It is quite possible that an estimated model i_= l_é_of the law y = X B
is significant in the above sense, but that (because of an overly-dominant e
term, e.g.) it may be of 1ittle value in describing the temporal variations of the
Fietidypad.e: .. that i = i_é is not very skillfulTin approximating y for the given

field X. A quantitative measure of such skill is the ratio

* The bulk formulas for the thermodynamic processes at the air/sea surface are
currently of this kind; and some of the various parameterizations of physical
processes incorporated in the currently most advanced general circulation
models of the air and sea are also of this kind.

+ This will be illustrated in §13B, C.
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Xé 2 T
REIE e

05 3 %
|Ly=Xe[1% [ly-y[l?

: : . i
where ||X]|]2 = X;2 + ... #x 2, for any n dimensional vector X = [X;, X,, ..., Xn]

('T' denotes transpose; all vectors are written as single columns of scalars).

Thus Q is the ratio of the square of the length of i_(i.e., ;12 & ot ;nz) to

the square of the length of the residual vector x;i} the vector representing the
error of the model in its attempt to describe y. Clearly, the greater Q the better
the model. Q is the canonic skill of the model.

Another measure of model fit is given by

N ET TR

. L (1.5)
ylz 1 yl?

which is the ratio of the estimator's square to the estimand's square. Clearly,
the greater S, the better the model. S is the classic skill of the model.

Still another index of the performance of the model i_= ﬁé in describing
Y 5 484is the ratio

lly-X8l12 || y- ¥
R = = (1.6)

[yl1? Hyll?

The smaller R, the better the model. R is the residual unskill index. As we

shall see below, R and S are simply related by:

R+S =1, Ched)

using an n dimensional form of Pythagoras' theorem. From this we see that either
R or S is sufficient to characterize the performance of the model. Further, one

can readily see that:
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Q =S/R = S/(1-S) = (1-R)/R (1.8)

D. Problem of Model Hindcast Skill

A1l three indexes are closely tied together in their abilities to rate the
performance of i_= Xé_in describing y = Xg. For a chosen sample size n, we can
watch how that performance is affected by varying the single remaining parameter
in (1.1) available to us, namely the number p of time series used to describe y.

Thus the jth reading of y, namely yj is given by the jth component of (1.1):
sw Ja= Vo & (1.9)

Our options are limited by observing that: the driving forces x\].k are given by
nature; the observations yj are measured in situ; the noise ej is inevitable.

With these as given, to improve our skill (to make Q, S greaterorR smaller) it is
left to us only to decide on which time series X5 to measure and how many there
will be included in (1.1). It has been the experience of many practitioners of
linear regression modeling over the years that an unrestrained growth in the number
p of predictors X; (holding n momentarily fixed) results in successively higher
skill values Q, S (or lower residual unskill R) while simultaneously there results
a decreasing model significance (i.e., one must drop the level of confidence in
order to continue to assert model significance). It has taken the last several
years of work by climate researchers studying the air/sea interaction problem
using linear regression theory to allow this insight about skill/significance
dependence on p to be so succinctly stated. (cf. Barnett and Hasselmann (1979),
Davis (1978)). In this way we come to the statement of the second main problem of
linear regression: how does one choose the location and number of the predictor
time series in X so as to maximize a given skill index subject to the constraint

that the assoctated model be significant? This is the problem of model hindcast skill.
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> Problem of Model Forecast Skill

The word 'hindcast' in 'the problem of model hindcast skill' emphasizes
thnat we are momentarily concerned only about how well the model may be cast on
the past; i.e., how well past observations y are fitted by Xé, There is no
automatic guarantee that a significant, skillful hindcast of (1.1) over a
particular data stretch X will continue to be skillful when the estimated é_is
used on a fresh stretch of time series beyond that of X. In this way we come to
the third and final main problem of linear regression studies of physical processes:
how does one choose the location and number of the predictor time series so as to
maximize a given forecast skill index, subject to the constraint that the associated

model be significant in the hindcast mode?

F The Problems Studied in this Note and a Summary of Results

We shall lay the groundwork for the full statistical solution of the model
significance and model hindcast skill problems defined above. In this way the
advances of Lorenz, Davis, Barnett and Hasselmann can be consolidated and possibly
extended. The third problem, that of model forecast skill, will not be considered
here. In our studies below, we shall be motivated in particular to clarify the
pioneering work in this area by Lorenz (1956), and shall be guided by the recent
advances on the two problems by Barnett and Hasselmann (1979), and by Davis (1978).
The work of Barnett and Hasselmann, in particular, has shown the importance of
including the probability density function of the difference Efé_in their analysis
of the model significance problem. Inspired by their example, the work below
turns to those parts of the work of Davis and Lorenz wherein the introduction of
the probability density function (pdf) of the classic skill index S would
correspondingly clarify their discussions of model hindcast skill. In the setting
of homogeneous noise, i.e., where <§§T> = g2, it will turn out that, by introduc-

ing the notion of the signal to noise ratio A = ||X8||2/0? into the settings of the
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skill and significance problems, we shall be able to unify the various approaches
of Davis, Barnett and Hasselmann to these problems, so that the solution of each
problem may cast light on the solution of the other. Specifically, the signal

to noise ratio A will be incorporated into the probability density functions for .
Q, S, R (and their three relatives) along with the sample size n and predictor
number p. In this way we will be able to watch the simultaneous, coupled effects
on model significance and model hindcast skill as p, n, and x are varied. Some
further corollaries of the presence of x in the probability density functions for
Q, S, R in the linear regression theory are: a unified geometric formulation of
the hindcast performance indexes (the three skills Q, S, C, and the three unskills
R, I, U);'skeleton' Monte Carlo representations of the six performance indexes as
random variables which, with the above geometric formulation, considerably clarify
the p, n, A behavior of these indexes; the derivation of an unbiased estimator of
A; a small-sample theory of the confidence limits of A, based on the pdf of any of
the six performance indexes; a large-sample theory of the confidence T1imits of A,
based on a form of the central 1limit theorem; and exact knowledge of the population
means and variances of the performance indexes. The work concludes with two
appendixes, the first giving a self-contained derivation of the general forms of
the pdfs for the performance indexes, and the second appendix which gives finite-
term integrals of the pdfs, yielding efficient numerical procedures to find the
ka, 1-%a significance levels for each performance index. Also appended are
figures and tables describing in a preliminary way some of the n, p, A-behaviors
of the performance indexes, thereby yielding information by which a user of linear
regression representations of physical processes can deepen his understanding of

those representations.

£ Dynamical Aspects of Regression Equations

OQur introductory remarks referred to the dynamical laws inherent in the
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form (1.1). It is of considerable help when visualizing the physical applications
of (1.1), particularly in geophysical settings, to see the B vector as a transfer
function of some sort, and the X matrix as time series of variously located driver
forces giving rise to the observed field y. Some insight into the origins of ¢ are
also forthcoming. In this section we will sketch the main stages of a derivation
leading to (1.1) starting from a two-dimensional linear partial differential
equation. The reader may imagine it describing damped long-wave motion in a fluid
basin or equivalently, linearized atmospheric waves over oceanic or land regions.
The essential ideas of the reduction to linear regression form are, of course,
independent of the specific physical interpretation. The equation (2.1) below
merely serves to draw our attention to certain general dynamical aspects inherent

in the form and application of (1.1).

A. Wave Equation

We start with the two dimensional wave equation governing the field
n(z,t) where z = (x,y), over some region R,

+ang + bn - c2(n Bty & (2.1)

+
e XX nyy

Here a, b are constants, describing dissipative mechanisms in the fluid (or general
medium) of interest. c¢ is the speed of propagation of undamped waves. f, is the
driving force. For example, if n(z,t) is wave elevation at point z at time t,

fx(z,t) may be the sea level pressure at the same space time point.

B. Solution of Wave Equation

We are interested in a solution of (2.1) subject to the initial conditions
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and boundary conditions

a]nn (E’t) H B]“(P_’t) -

where n_ is a derivative normal to the fluid boundary at point b = (xb,yb), at each
b of the boundary B of the region R over which (2.1) is to be solved.
It can be shown that under the preceding conditions there exist two Greens'

functions G, H such that for every z in R, and t > O,

(z,t) = ff fo(z',t')6(z',z,t-t")dt'dA(z") + £ [n{z',0)H(z',2,t)
(2.2)

+ nt(Z' sO)G(_Z_| aist)]dA(Z_l )

where
el siny t
6(z'.z5t) =€ %% X u (z')u, (z)
k=1 Yk
, _ -at = oy ¥ ;
H(Z_ ,Z_,t) 71€ i=] [COSth + Yy S1nth]Uk(£ )Uk(i)
and where

The A are eigenvalues of the spatial Helmholtz equation associated with (2.1) and
the given boundary conditions. Moreover, the functions uk(g) are the corresponding

eigenfunctions of the spatial Helmholtz equation, and have the properties
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IR u (z)u,(z)dA(z) = s,
and
2_ uk(z)uk(gp = §(z-z") .
k=1
G Discretized Solution of the Wave Equation Diagnostic Mode

We turn now to the simplification of (2.2) with an eye toward attaining the
associated regression equation. The first term in (2.2) indicates the way the
driving force f (z',t') makes itself felt at z,t through the transfer function
G(z',z,t-t'), which communicates the cause at z',t', to the effect at z,t. It is
the linearity of the process and the constancy of the coefficients a,b,c in (2.1)
that allows G to depend only on t-t'. The second term in (2.2) shows how the
initial state of the fluid system is felt at time t later. As time t grows, the
exponential terms in G and H tend to make the system forget its original state,
so that in the long run, i.e., for t greater than some t_, (2.2) can be shortened

o
to

n(z,t) = [ [ f.(z',t")G(z",z,t-t")dt"'dA(z") (2.3)
Ro

In the diagram below we have partitioned the region R into r parts over each of

which, at a given moment in time, wemay approximate the spatial behavior of f_ by
an appropriately chosen single number. Moreover, we can divide the time interval
[o,t] into T subintervals over each of which f, can be represented by a single

number. Thus by a mean value theorem of calculus we can write (2.3) as:
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r 0 k
nfzst) = B LT - [ b falz )6 e
i=1 k=1 R, t,
or as
r ‘o
n(z,t) =z 5 ¢;(t-r) G4(7)
i=1 t=0

v
t
]
(w4
S
B
=4
o
>
—~

N

)

11

(2.4)

where z is in Rj’ and where f,(z',k) = ¢i(k) for some z' in R and k=t' in [tk-]’tk]'

Thus the time index has been discretized along with the space index, and t

integer such that tk > to’ when k > Ty Moreover,

o}
we have set:

is the

t
G..(t k) = [ [ X G(z',z,t-t')dt'dA(z") .
ij'o Rt £ 2
i k-1
P W
Subregion R, e ~’='-

R

N\ +J

NN

/

7y

(

.

IE$<\p¢\\:\
&

I

L

Region R

~ Subregion Rj

NL

We next decide that only p of the r subregions in R will contribute essential

dynamical effects to n{z,t) at z in Rj‘

Hence (2.4) can be written
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Ty B ket sbal s
n:(t) = = ¢.(t-1)6,.(1) + & g ¢.(t-1)G; (1
J i=1 =1 | N i=ptl 1= I
. S (2.5)
LR e ) R o ()
i=1 t=1 1 J

In this way the second sum term in (2.5) becomes the noise sj(t).

D The Linear Regression Equation

It is now a simple pair of steps to the form (1.1). Let us write, for

fixed j

gﬁj for [Gij(])’ Gij(z), s g ot didve it 8 T wedskiBi
and

'94(£)" for [og(8-1), oq(£-2), ooy 0y(t=r )1 L =1, Loy p

with ¢i(tl) =0 fort' <0, i=1, ..., p. The 'T' denotes transpose. So Qj(t)
is the driving force vector of To components based at a point in Ri’ starting its
force terms at the prior time t-1, and going into the past to t-TO. There are
no driving forces, by construction, before t = 0. With this notation, (2.5)

becomes

n(t) = Lo T(8)s gy (8, ooy 0 T(0)T| Byy| + ey()
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for all integer times t > 0.
We can write (2.6) out explicitly for times 1, ..., n, i.e., for any n times
(not necessarily consecutive) representing n snapshots of the dynamical process in R.

The resulting n copies of (2.6) can then be arranged in vector form:

(] T MMM o] [em]
(@) | L (2) 8,72 ol aT(2) A R
_nJ(n) | L9;]T(n) QZT(H) ng(n) d L—G—pj | LEJ(n) :
g X B €
i.e., as
y=X8te (2.7)

where y, X, g and ¢ are defined as shown. In this way we have realized (1.1) in

a specific dynamical context, with B now interpretable as a vector of Green's
function values, arising from the solution of (2.1) subject to certain initial

and boundary conditions. The noise vector &€ is seen to be the linear superposition
of (in practice usually very many) perfectly legitimate pieces of information about
the dynamical system in R. But by definition, unwanted information is 'noise’.

By the grace of the central limit theorem, the successive realizations of e arising
from more or less independent successive n-samples of the n field in R can usefully
be considered as drawn from an infinite ensemble of gaussianly distributed

n-dimensional vectors.
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E. Discretized Solution of the Wave Equation - Predictive Mode

We return to the discretized solution (2.5) and examine it for the possibility
of yielding up a predictive equation. How must (2.5) be modified so as to have a
prediction of “j(t) from knowledge of the driving forces ¢1(t-r)? Clearly, to
achieve this, the summation over t must not begin at t = 1, but at some integer
2 >1. For in order to predict n.(t) we must restrict use of driving terms to some

J
finite time in the past of t. Thus we can write (2.5) in the predictive mode as:

p* " Fo e r o
y.(t) =z = ¢.(t-1)G,.(t) + z g ¢.(t-1)G. . (1)
d i=1 t=p " i=ptl =1 5
p 2~
+I 1 ¢,(t-1)6, (1) (2.8)
i=1 1=] g

where now the noise term ej(t) contains information — all inaccessible by fiat — about
effects at other places up to the present and effects at the same place in the
immediate past. A reduction of (2.8) to (2.7) now can be made, with no major

changes in the steps: The time lags in gﬁj now being at ¢ > 0 and continue to Tys

the time arguments in Qd(t) now begin at t-2 and continue to T, The final form

of the regression equation (2.7) is unchanged.

1 Discretized Solution of the Wave Equation - General Mode

The preceding modification (2.8) of (2.4) suggests still another. It is
possible in principal to have information about the drivers ¢j(t-r) forsmmgd s Grs ,
2, then a gap of knowledge from 2+1, ..., to m, and then knowledge of 95 (t-t)

for T = m+l, ... Ty The resultant form of (2.4) can be written in general as
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where now T is a set of integers where the information about ¢i(t'T) is known for each
T in T. Clearly (2.9) covers both (2.8) and (2.5), and even (2.4). Once again the
general regression form (2.7) results.

The form (2.9) is sufficiently general to allow even negative integers. The
interpretation in this case is that of a postdiction of the observed field yj(t),
i.e., a characterization of the past behavior in terms of its future behavior. This

is not as absurd as it may first appear.

G. Postdiction vs Prediction

As we shall see in the next section, the determination of the g vector via
least squares fit of X B to y is unconcerned about the specific information
contained in X and y. From an algebraic point of view, the normal equations will
work on any X and any y to produce an estimate of g. Yet there is something in our
intuition that says (2.7) in the real world will be more successful in the predictive
than the postdictive mode. Intuition is correct, but for reasons which are not
easily stated in everyday terms. A partial explanation follows.

If we return to the wave equation (2.1) and set the dissipative term a to
zero, the exponential terms in the Green's functions of (2.2) become unit-valued.
In this case it can be shown that the predictive and postdictive modes of (2.7) are
equally powerful with respect to any measure of hindcast skill and any measure of
forecast skill we can reasonably devise. When a > 0, however, the predictive mode

t

requires t > 0 and the e 3" terms tend to dampen the effects of ej(t) in (2.9), but

the postdictive mode tends to magnify the effects of ej(t) since t < 0 and the e_at

terms can become enormous for reasonably-sized negative integers in T.
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This situation is closely analogous to the numerical problem of trying to
solve a partial differential equation, such as (2.1), backwards into time, starting
from given initial conditions and boundary conditions as in par B above. As the
numerical procedure is followed for a case in which a > 0, it is found that
numerical instabilities arise and as one progresses into the past the solution
Titerally blows up by producing enormous, unrealistic n(z,t) values for t < 0.

By the same token, solving (2.1) forwards into time, any slight numerical glitches
(e.g., round off errors) arising in the machine's performance (which in the
previous case were disastrous) are dampened by the presence of the e—at effect,
errors are forgotten, so to speak, and information about ¢i(t-r) for t > Tg» for
some integer t_, does not contribute materially to yj(t), for large t-rt.

(0]

H. Interim Conclusions

The net result of these observations about (2.7) vis a vis (2.1) indicates
that we should expect our predictive uses of (2.7) to be generally more effective
than the postdictive uses. For once in this real world of real frustrations
besetting the forecaster of geophysical time series, something seems to be working
in his favor: if he keeps good records, the forecaster doesn't have to worry about
postdiction, and he can turn to overcome the evils of the lesser of the two tasks:
prediction.

Yet the damping mechanism in (2.1) eventually catches up to the forecaster
here, too. His records, no matter how well gathered and kept, will be relevant
only for limited predictions into the future; in attempting a given prediction,
damping makes irrelevant the use of information beyond (say) Gt into the past;
damping and unforseen wanderings of ¢; in the future and elsewhere make irrelevant
his predictions beyond 34 into the future. If he turns to predict the predictors

9is he could, if not careful, become enmeshed on the threshold of an infinite

regress.
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With these reflections, we turn to the exposition below with an overriding
feeling (despite the aspect of precision and power it at first conveys) that it is

merely an exercise in algebra and geometry bordering on the brink of futility.

34 Least Squares Estimate of B

Having examined the dynamical basis of (1.1), we now turn to the practical
matter of estimating the model parameter 8 and also the model noise ¢ in (1.1).
To begin, we have the unknown, g and two knowns y, X from which we attempt to find
the best approximation é_to B in the least squares sense.

Let X represent an n x p matrix of p columns, each of which comprises n

measurements of a driver force field. Thus if X = (54 Xo ve- 5p)’ then L
(X]j’ X2j’ S an.)T are the n measurements at the jth point in space. The
corresponding n values of the observed field y are given by y = (y], LA s yn)T.

Our discussions in §2 show that (1.1) may be taken in its general mode, so that
what we are now to do holds equally well — in an algebraic sense — for both
predictive and postdictive activities with (1.1).

We wish to represent the vector y as a linear combination of the vectors

éj’ =1, ..., p. Thus let us write
f : (3.1)
e, Ter y -~ & el .
k=] ¥ K

With y and the x. given, we search through the set of all p dimensional vectors
L —J

n
)T for that which minimizes ||§|]|2 = = 632. Clearly, for

o = (a], Cps woes ap

a useful and unique solution to this problem, we must postulate that n > p at this

stage.

Now from (3.1), the jth component of & is
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(3.3)

A necessary condition for the minimum of the function r is the set of p conditions:

ar - 4
aak 0, k el WD & (3.4)
Thus in (3.3) we require
n P
5r
e 2ol Rt IR o] X Bir o/ smeaiOn Zalls > P
da, g e LS Jk7k Tje
whence
p n n
E b m%e Ja, =3 Pikit m L EL, ..ae P (3.5)
k=1 =1 JKIE Tk g TR

The set (3.5) is the desired collection of p linear equations in the unknowns

o k =1, ..., p. Knowing the xjk and the yj, we can thus find the solutions of

(3.5). We can put (3.5) into matrix form to simplify subsequent work with it and
its solution vector. Towards this end we note that the right side of (3.5) is the
inner product of y and Xos T.e0s 1T§Q =_§RT¥ . The quantity in square brackets

on the left in (3.5) is the ke element of the symmetric matrix §T1_=_;, i.e.,
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z, =12 Hence (3.5) may be written

ke ek’

£

If we denote the ¢th row of Z by 'z™', then (3.6) can be written

z X
2 )
a = y
£ %
= i L g
which is
sty

Solving for a and henceforth denoting the solution by 'é}, we find

19
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This is the desired least Squares estimate of the mode] parameter B, using the
known time series information in X and Y. In order for the inverse in (3.8) to
exist, the rank of X must equal P, i.e., the p vectors 5j’ Jj=1, ..., p must be

linearly independent. This we assume henceforth.

4. Analysis of the Residual Noise

We now inquire as to how well the approximation of the observed field Y
by linear combinations of the 5j went. There are two separate aspects of this

approximation. Firstly, we write

Enp fOry-Xxs (4.1)

Here En-p is an n dimensional vector which summarizes the fit that we have made
to y. ||En_p|’2 is the minimum value of [18]]2 sought in §3. We can write

(4.1) in the tautological form:

+

Y

Y=EBtre -
Next we inquire as to how wel] we have approximated the signal X B by l.é- Thus,

secondly we write,

'%'%rié-lﬁ (4.3)

We now can write another tautology:

Here € _1is an n dimensional vector.
—P

£é=£§+%
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Combining (4.2), (4.4), we find the general form of (1.1):

where we have written

It should be noted that e is introduced into the theory in a way which anticipates
its determination in practice: (4.1) obtains by direct computation the portion
gn_p; and (4.3) obtains its orthogonal complement gp. In practice gp can be partially
estimated only after several samples of size n - i.e., several fits of (1.1) to fixed
data sets X, have been made, and provided the sampling has been done from the same
noise population. In general, however, Ep is not exactly estimable. It is simply

not observable without some inkling of B, our main unknown! This is the reason why

€ is then given a uniform variance for each component. In our ignorance, it's the

best we can do (see, however, §6D, E below - also note §10B).

A. The Data-Space Projector

In order to understand the physical and geometric implications of the above

definitions of ¢ _, ¢ X_é} X B, and their interrelations, we digress here to

=Pr mhepe
introduce an important matrix P, the data-space projector, and develop some of its
consequences useful for linear regression theory.

When we form ﬁ_é) using the representation for é_in (3.8), we find

XB=Py (4.7)

where we have written
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By direct computation we find that the n x n matrix P has the following properties

i B (4.9a)
Pl=p (4.9b)
s ik 5 (4.9c)
(I-P)P = P(I-P) = 0 (0: nxn zero matrix) (4.9d)

(I-P) (I-P) = (I-P) (I: nxn identity matrix) (4.9)

Property (4.9a) states that P acting on X Teaves X unchanged. Actually,

P acting on each column vector 5j of X Teaves 5j unchanged; for the meaning of
PX is P [xy x, ... gp] = L254 Pxy ... Eﬁp] as an application of the definition
of matrix multiplication will show. Hence by the meaning of matrix equality, we
conclude that for each j=1, ..., p, Elj = X5

Property (4.9b) says P is symmetric, while (4.9c) results from two
applications of P when P is written on the form (4.8). Property (4.9c) and (4.9a)
are equivalent when X has rank p.

Property (4.9d) follows immediately from (4.9c), and will be crucial below
in our further analysis of noise and linear regression: it says that the operator
I-P is orthogonal to P. The practical import of this orthogonality is that it
carries over to vectors which are images, under P or (I-B), of other vectors.
Thus if b = Py and a = (I-P)x, then necessarily a and b are orthogonal. Indeed

b = [x'(I-P)T1(Py) = x'[(1-P)"Ply = x'[(I-P)P]y = x'0 y = 0. In this deduction
d

T AT + ET, for

any two commensurate matrices A, B.
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Another useful and far-reaching consequence of the properties (4.9) is that:
any element of E_ can be uniquely decomposed into a sum of two vectors, one lying
in the space Ep spanned by the columms of X and the other in the orthogonal complement

En—p to this space. To see this, let R(P) = {Z: PZ = z} and R(I-P) = {z: (I-P)z = z}.

It is easy to see that both R(P) and R(I-P) are subspaces of En. Then if Z is any

vector in E , Z = PZ + (I-P)Z is the desired decomposition. To see this, let

M(X) = {x : for some y = (y, ..., yp)T, X = Xy}. M(X) is the p dimensional vector
space spanned by the columns of X. We now show that r(P) = M(X). If ZeR(P), then
Z=P2Z-= l(lTi)_]ﬁTi = Xa, where a = (iT_)g)']XT_Z_. Hence Ze M(X); so R(P) < M(X).
On the other hand, if xeM(X), then for some a = (a], e ap)T, x = Xa, and

Px = PXa = Xa = x, and x € R(P); so M(X) < R(P). Hence M(X) = R(P) and R(P) has

dimension p. Let Y = (an Ns Xq) be a basis for R(I-P). Since R(I-P) is a
subspace of En’ we know at least that q < n. If z e En, then we can write any z
in E_, as shown above, as a linear combination of a vector in R(P) and a vector in

n
R(l;E), i.e., as a linear combination of the p vectors 5j and the q vectors Xj‘

Therefore X, Y together consist of a set of linearly independent vectors that span

En. Hence we must have p + q = n, i.e., @ = n-p. Clearly each element of R(I-P)

is orthogonal to each R(P) so R(I-P) is the orthogonal complement to M(X) in En.

Finally, there is only one way to write z as a sum of a vector in R(P) and one in
R(I-P).
R(I-P). Then since (x-x') + (y-y') = 0, we can apply P to each side and find P(x-x') +

Suppose, e.g., that z = xty = x' + y', with x,x' in R(P) and y,y' in

P(y-y') = P(x-x') = 0, whence Px = Px', and by definition of R(P), x = x'. On the
other hand, applying (I-P) to (x-x') + (y-y') = 0 yields y = y', in a similar
manner. Thus the main assertion above is proved. Henceforth we will simply write

Ep for R(P) and En-p for R(I-P).

Since P maps En onto Ep, P has rank p; and since (lfg) maps En onto En-p’

(I-P) has rank n-p. A further study of P and (I-P) is made in §2 of Appendix A.
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B. Analysis of €

Returning now to the definitions of Ep’ &8 in par A, we see that from

(Aie)y, {4 ?)
J Xflé.= y-Py = (I-P)y (4.10)

Hence ¢ is in En- . By construction of Ep (as a linear combination of the

n-p P
columns of X in (4.3)) we find £ is in Ep. Hence by our observation in par A,
the decomposition (4.6) of e into Ep and En-p is unique.

Alternately, we can arrive at the decomposition of ¢ by, applying P to
each side of (4.5), using (4.7), and (4.3) for £y along with (4.9a); we arrive

at:

giPep. (4.11)

Using (4.5) for y in the right equality of (4.10), and (4.9a), we have

gadp T (L-R)e (4.12)

Equation (4.10) gives us the constructive definition of gn_p in terms of y alone

(as a projection onto En-p)’ while (4.11), (4.12) let us see B e as projections

onto Ep, En- @ff the-noige \vegtonscy *+Aliso, Eq. (4.7) says Xg is the projection of
onto E_.

- p

@~ Analysis of y, é, and ﬁ_é

Returning to (4.2) we can by (4.12) write that as
y=X8+ (I-Pe (=Py + (I-P)y) (4.13)

and (4.4) by (4.11) as
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XB=Xpg+Pe . (4.14)

(4.15)

Here, very clearly, we see the roles in describing y, E_é_of the two error-vectors

in (4.13) and (4.14) and their relative orthogonality. In (4.15) we see

% nop
B8 as a random perturbation of B either via the full € or via its projection £ on Ep.
4, Standard Form of the Regression Equation

We will show that the regression equation (1.1), i.e.,

y=X8+e, (5.1)

if we know X and the statistics of e, can always be reduced to the form where

and

Here lp, ln are identity matrices of dimension p, n respectively. In other words,
the nxp data matrix X can, without loss of generality, be considered as a set of
p column vectors, each column a time series, such that the ith column x. and

the j column x. of X are uncorrelated and of unit length:

J

T = 1 ] =
X5 5j Gij 3 il }5 W ar ssiPM.
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Moreover (5.3) states that without loss of generality the noise simultaneously

with (5.2) can be of zero mean and uncorrelated with uniform variance ¢2. That

is, by (3.3)

The ensemble average operation < > is over some specified set of random variables,

e.g., the set of normally distributed n dimensional vectors alluded to in the

closing remarks of §2D.

A. Singular Decompositions of Matrices

To facilitate the proof of assertions (5.1)-(5.3) we pause to gather the
essential elements needed in that proof. The material here is general and of
potential use in studies of Tinear regression of dynamical systems.

If C is any pxp symmetric matrix, then a fundamental theorem of 1linear
algebra states that there exist p orthonormal px1 vectors €15 - v gp, which we
can gather together in a pxp matrix E = (g_]_cg,2 e gp), and there exist p eigenvalues

! Qp which we can put in pxp diagonal matrix form L = diag (2], .oy =),

Bys ee )

with the property that

where

Hence we can express C as
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If we write

1
1) 2

then (5.5) can be written

Hence if we write

' for diag (z] .o

27

we have found the square root of C, in the sense that :

[}
I
1%}
%)

Next, suppose that we have any nxp matrix Y.

B (5.6)
(£ L% (£ L%)T (5.7)
(pxp) (5.8)
(5.9)

Let € z__Tl. Hence C is

a pxp symmetric matrix and by the preceding analysis it has an associated pxp

eigenvector matrix E and pxp eigenvalue matrix L withtheproperties stated below

(5.4). Thus we can write
Y=Y(EED=EE
and
'‘A' for Y E,
and observe that, on using (5.4),
A'a = (YE)(¥E) = ET(YTVE
=E -

SN0

(nxp)
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Thus if we write
-
'X! e 4 My S (nxp)
(assuming C is positive definite, i.e., all zj are positive) then
1
A=IES
and (5.10) becomes
ficipe® s
where

This factoring of Y is its singular decomposition, with the n x p matrix A

(5.11)

comprising in its columns the principal components of Y, i.e., (5.10) in the form

(5.12)

is the principal component (or empirical orthogonal function) decomposition of Y,

with the orthonormal vectors of E the empirical orthogonal functions or principal

vectors - of Y.
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B Uncorrelating the Noise ¢

To demonstrate that (5.1) can be written with (5.3), we proceed as follows.

Suppose we have a linear regression equation in the form:

X=Wa+3s (5.13)
Where W is n x p, and § is n x 1 with the assumed known property
<8 8 = o2V (5.14)

We observe first that by subtracting <§> from each side of (5.13), we can, after
relabeling, satisfy the left condition in (5.3). Now, clearly the n x n matrix

V is symmetric. Then by (5.9) we can find its n x n square root S such that

Assuming V is positive definite,* we multiply each side of (5.13) by §f]:

S 'x=S"'Wa+$S's (5.15)

and observe that

* If this is not the case, we can also handle the slight complications arising
therefrom. To do so here will cause too much of a digression from the main
line of the development. The main point to note in this paragraph is that,
in order to reach (5.18) below in practice, we must have in hand the matrix
V in (5.14) in some form.
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as was to be shown in (5.3). Thus writing

'y' for s7'x

'Y for ST'W
and

e’ for 58,
(5.15) becomes

< ikt 2 06 S

where ¢ has the property (5.3). Moreover, o may be estimated via

(5.18)

(518a)

Observe that o in the noise-free case is in principle unaffected by pre multiplying
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(5.13) by §f]. Hence in the case of no noise, (5.18a) should recover a exactly.

C. Orthonormalizing the Data Matrix

Using the decomposition of Y, given by (5.11), in (5.18), we can transform

(5.18) to:

y=XB+e (5.19)

where we have

Ea (5.20)

and where X, L and E are as given in the preceding discussion of the singular

decomposition of Y in par. A. Hence in (5.19)

and so properties (5.2), (5.3) both hold for (5.19).
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62 Geometry of Linear Regression

The analysis of the residual noise in §4 led to the introduction of a
projection operator P whose geometrical interpretation suggests the following
imagery in connection with linear regression studies.

The diagram below is drawn for the case of n = 3, p = 2. However, it
contains all the essential elements of the general case and is labeled to

suggest the general case.

Drawn for
pE3,p= 2
E
p
4
A. Euclidean Geometry of the Diagram

Every formula in §4 and derivation there may be interpreted in the light of
this diagram; and other formulas and definitions may be read directly from it prior
to formal proofs or definitions. For example, from Pythagoras' theorem and the

orthogonality of the pair £ En-p® and the orthogonality of the pair X B8, &

=n-p =
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we find that

gl 12 = [1X 8112 + |le,_pl 12 (6 triangle)  (6.1)

|lel|? | |2 (¢ triangle) (6.2)

2

lepl 12 + lley_p
These relations are read directly from the two right triangles in the figure

(1abeled via angles 6, ¢). They are proved in general by means of the representation
of the vectors on the right sides as appropriate projections via P or (I-P) of the
vectors on the left sides; and then using (4.9), Another relation, based on the ¢

triangle, and (6.2), is:

[ly-X 8112 = [1X(B-8) |12 + ||y-X 8]|2 (s triangle)  (6.3)

This relation shows that ||y-X g||2 attains a minimum when éfg_for a given

Y, X, n and p.

B. Kinematics of the Diagram

The kinematic aspects and random aspects of linear regression stand out in

the diagram. Thus X

is the underlying fixed signal which is perturbed by random
additions of ¢, so that we may watch the random variable y twitter about as
successive realizagions of ¢ are added to the fixed vector X g. Our estimate l.é
of the underlying signal is also a random variable, its wanderings over the space
E_ being propelled by the random vector in E_. As we saw in (4.11), is the
b g prop Yy £ : ()gp

projection of e onto Ep. These images suggest that the pair Ep’ Eﬂ—p and the

pair l_é, E0-p are each independent pairs of random variables. These facts are

borne out in our statistical studies in §s2, 5 of Appendix A and form the basis


mailto:Thus!.@.is
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of the probability density derivations occupying the main portion of the study

below.

€. Fixed-XB Interpretation of the Diagram

In the interpretation of the diagram above it should be kept in mind that
the diagram is for a random noise e associated with a fixed X B vector — a fized
signal associated with a specific set y = (y], e yn)T of observations and set
X = (54, g ép) of forcing field data. If we go on to a new set y and X down the
time stream (say) it is possible that the pdf governing the residual noise vector e
(as discussed in §4) will be different. If that is the case, the successive
realizations of ¢ in the diagram may be distributed quite differently relative to

the first diagram. Thus it is generally not possible to associate the same

diagram above with two successive (n-sample, p-predictor) experiments.

D. Definition of a Stationary Setting for the Diagram

We may put the preceding observation in perspective by stating it in a
positive rather than negative way. If we have two or more successive (n-sample,
p-predictor) experiments, and conducted in a milieu where the pdf of ¢ is the
same for all experiments and so that the ratio ||X8||2/c? is the same in each
experiment, then the same diagram holds for all the experiments. In this sense
we may say that the random noise vector (or its pdf) is stationary, and that the
experiments of the type (n-sample, p-predictor), occur in a stationary setting.
This situation could arise in practice, and its earmark would be a definitive
spread of ¢ vectors (as found in (4.6)) which, via a successful statistical test,

are all judged to belong to the same population.

E" Determining Stationarity of a Setting-- The Associated Fixed-Xg Interpre-
tation of the Diagram

It is, in the last analysis, only by direct experimental determination of
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£ En-p and hence ¢ (as sketched in §4) that we can know the pdf of e and can
imagine the diagram above occurring in a stationary setting. This would be done
over some finite set of (n-sample, p-predictor) experiments. Once the pdf of the
n-dimensional vector e has been estimated from this finite set, we then may imagine
any one of those experiments with its fixed n, p to be interpreted via its
regression diagram above. That is, we imagine the X of that experiment given, and
an underlying unknown B present. The y that we have measured is then thought of as

a random perturbation of the fixed X 8 via an e drawn from the population as just

determined by estimation.

7. The Performance Indexes of Skill and Unskill: Q, S, C and I, R, V

We now come to the key ideas in judging the goodness of fit of Z_E_to the
observed field y. Contemplation of the regression diagram of §6 shows that the
smaller ||§ﬂ_p|| is, all other things (n, p) the same, the better is the regression
Tk ofll_é to y. In other words, the smaller 6 is, the better is the fit. An
intuitively desirable skill index would then increase as 6 decreases. In order
for the skill index to be free of units and scale sizes when describing goodness
of fit we can adopt ratios of the lengths of various portions of the diagram to
reflect the skill of the fit. The most natural candidates for such skill ratios
are the trigonometric functions associated with the 6 triangle. There are six
trigonometric functions associated with 6 (see the mnemonic diagram below): three
of them decrease as 6 decreases; namely, sin 6, tan 6, sec 6; and three increase
as 6 decreases, namely cos 6, cot 6, csc 6. It is this behavior of the latter

three that suggests adopting them as skill indexes, and
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- cote —

hence assigning the former three as unskill indexes. The table below summarizes
these definitions and the names and symbols we attach to them in order to
facilitate discussion of their statistical properties and conventions later in
this study. We use the squares of the trig functions because of the relatively

simple algebraic and occasionally linear connections between them.



HINDCAST PERFORMANCE INDEXES

Symbo1 Name Trig Analog Basic Definition Connections pdf Ref.

q canonic skill cot? o 11X 811271 1e, pl12 | Q= 195 = C-1 (8.1), (A48)
skins | s classic skill | cos? NXBIZ/IMglz | S=1R=qds | (8.7, (as)
) 1

c coskill csc? o |yl |2/l|5ﬂ_p| |2 C=735 =14 (A48)
' - 1-s
1 ineptness tan o ||§ﬂ_p||2/||1 Bli2 |, gz sa5 Dul (8.4), (A49)
unskills | R residual unskill | sinZ e Heg_pl 127112112 R=1-5 = ¢ir (As1)
v unskill sec? o Lyl 12711 8]]2 U=d=e (A49)

By using the various connections between the & triangle and the noise components
Epe En-p’ the basic definitions above can be given numerically equivalent forms.
For example, we can also write Q as I|§_éj|2/||x;§_éj|2 using (4.2). In this way
Q becomes directly computable from the observed field y and the data field X, where
é_is of course given by (3.8). From Q the remaining two skills follow by the
indicated connections. Similarly, the ineptness I is simply the reciprocal of
canonic skill Q,hence directly computable, and so the remaining unskills are
readily forthcoming from I (and hence ultimately Q).

From a statistical aspect, the most basic of skill indexes is the canonic
skill. Its probability density function (pdf), as we shall see in Appendix A,
follows most simply from that of the residual noise vector g, the fountainhead of
all the pdfs in linear regression theory. Moeover Q's mean and variance alone
have simple closed expressions. A1l other five pdfs could follow (if one chose)

from Q's alone by simple geometric and analytic considerations. There are three
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natural pairs among the six indexes: (Q, C), (S, R), (I, U): Since Q and C are
simply related by a linear relation we need only study Q. Moreover, since S, R,
and I, U are also linearly related pairs, we need only study (say) S, and I. We
are particularly interested in Q and its arithmetic inverse I; their relation is
not as simple as the linear relations among the three natural pairs.
The presence of S in the basic triplet Q, I, S and in the connecting

relations was singled out (from the various other possibilities) because S is the
classic skill index initiated by Lorenz, and later studied by Davis, and Barnett

and Hasselmann.

8. Probability Density Functions for Q, I, and S: Their interpretation and
their behavior

The probability density functions of the performance indexes allow us to

see at a glance where the indexes mostly dwell in their respective ranges; they

~allow us to easily and exactly compute the means and variances of the indexes;

they allow us to construct confidence regions for estimates and they generally
allow us to theorize about statistical questions arising in regression studies of
physical fields. Once the probability density of the noise vector e is determined,
the density of each index is fixed. In this study we have chosen the normal law
governing e because of its relatively frequent occurrence in natural phenomena and
because of its mathematical tractability.* The details of the derivations of the
six indexes based on the normal law for e, are given in Appendix A. The treatment
there is rigorous, and essentially complete. 1In this section we single out for
discussion three of the indexes, namely Q, I and S. The reasons for these choices
were explained in §7. Throughout the discussions below, A = ||X B||2/02 (signal

to noise ratio), n = sample size of an experiment, p = number of predictors in an

experiment.

* The reason for this choice is given just below (2.7).
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A. Pdf and Moments of Canonic Skill Q (cf. (A48), (A55), (A58))
0T ()" | r(rtn) (o]

PaxInsps2) = e §=o rT " T(rep)r(2(n-p)) ; (14x) 778"

(o< x <)
A+
¥~ hopz ’ V=P
2[A2+§n-2)§2x+ﬁ)|
2 - -
90 n-p-214[n-p-4 # R
B. Pdf and Moments of Ineptness I (cf (A49), (A59), (A60))
o Lin- -]
-1 (30)°  r(s+4n) x#(n-p)
P.(x|fispsn) s ® ok 2 . 2 . , n>p>1
il N R e =) e B R
(o< x <=)
"LEA S (%A)s ] 1
up = (n-p)e §=o L Feans s P 2 (st raw moment, u ])
', = (n-p) [n- +2]e-%A § (39)° . 1 >4 (2nd
H2 Py ERZP S [2s-p-2][2s+p-4] * P

The variance doesn't appear to have a simple closed form, and so o2 =

I
may be determined numerically.

raw moment)

39

(8.3)



§8

C. pdf_and Moments of Classic Skills (cf (A51), (A64), (A65))
Ss o ()" . T(r+4n) W01 L(n-p)-1
(x|n,p,a) = e $‘=O‘ | T(r+p) T (%(n- p?) (1-x) » n>p>1
(8.7)
(0<x<1)
p —lé)\ B (;E)\)r - 2r+ P
Hg = € rEO ] 57?153 (1st raw moment, u ]) (8.8)
2o L () | (2r+24p) (2rtp)
e Bie = » (2nd raw moment) (8.9)
2 g T * (2r+2+n)(2r+n)
The variance is computed via og = “é-“iz -
For small signal to noise ratio A :
ug = (1--%)-% + %—(%;%) (to first order in A) (8.10)
=5, t % (1-50) . S0 = p/n.
Hence S0 is the mean value of S for the case » = 0.
For small signal to noise ratio A:
o} = %%%i%%-[ﬁ-- 2X £—+Egz§lﬂ (to first order in A) (8.11)
2(1-50) (1+p+So)
e [S0 - 2A-—~7;QT—J > S, = p/n .
For » = 0, the exact result holds:
2(1-S)S
Jole o’ o _ 2(1-p/n)(p/n) (8.12)

S n+2 n+2
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D. The General Behavior of Q, I, S with variations in n, p, A

Before describing our numerical studies of the behavior of some of the
formulas (8.1) - (8.12) above, we return to the geometric setting of linear regression
in 86 and recall the discussion of its proper interpretation: we are in a stationary
setting and the diagram there shows a vector X B (the signal) to which is added
a random vector € (the noise) to produce the random vector y (the observation)
associated with a value of 6. Now imagine a new (n-sample, p-predictor) experiment.
This produces a new realization of y = X B + €) and hence a new value of & and
corresponding new values of the six performance indexes, Q, S, C, and I, R, U.
Single out, say, Q. Each new realization of 6 (through a new realization of y, X
and ) produces a new value of Q = cot?e. With the accumulation of very
many realizations of y in this stationary setting there appears (for a chosen X B
location in Ep a 'cloud' of y points in the space fir (E3 in the diagram). The
average location of this cloud — its center — is normally X g. If, e.g.,
£ Nn (g,cZQﬂ), then the center is X B8 and its size is governed by the sizé Of O
Thus the cloud will hover very near the plane Ep (E2 in the diagram) if o2 is much
smaller than ||X8]|2, i.e., if A = ||X8||2/02 is large. The value of 6 for such a
cloud will always be near 0 and so the associated sprinkling of the values cot?e
on the real line will be located a large distance from the origin. That is, for
a large signal to noise ratio, canonic skill Q will tend to be large.

Returning to (8.2) we see that it corroborates our preceding conclusion that

the average value of Q increases with A for given fixed n, p. The diagrams below

sketch the two clouds of y points for cases of small and large A.
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small X, large 8's

small Q = cot?e
large I = tan?e
small S = cos26

large A, small 6's

large Q = cot?s
small I = tan2e
large S = co0s?26

From these diagrams we see that ineptness I, for given n, p, decreases with
increasing A while both canonic skill Q and classic skill S increase. When X = 0,
the cloud engulfs the origin of the diagram and 6 often is in the vicinity of 90°.

The average values of Q, I, S in this case are easy to reckon:

= —..-R__ - 2
uQ n-p-2 5 n-p > (8.13)
up = g A=0, np>0, p>2 (8.14)
" :E “ np>0 (8.15)
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Observe that ugr M increase as p increases for fixed n showing that, in a stationary
setting, hindcast skill on the average increases as the number of predictors is
increased. Notice that these are average increases, meaning that in successive trials
for a case of fixed n, p we need not always have Q or S greater than their
correspondents for a case of the same n (say) and smaller p. Notice also that
even though Q and I for each realization of ¢ are related by the connection IQ =1,
their population averages need not be reciprocal.

Perhaps the overriding observation for the » = 0 case — the case of no
signal — is that S, e.g., in a given stationary setting can fluctuate and land
anywhere in its domain (0, 1) as we perform hindcast experiments in that setting.
That is, just because there is no signal, the value of S need not always be Q.
As (8.15) states, the average value of S is p/n. Similarly, Q need not always
be zero, and the closer p is to n (within the stated coadition n-p>2) the higher
is the average value of Q. Even ineptness when there is no signal, can be
brought quite low on the average over a set of successive experiments in a

stationary setting by making p sufficiently near n.

E: Study of Some Specific Examples of the pdf's of Q, I, and S

1) We consider first the properties of the canonic skill Q. Figure Q-0 shows

plots of (8.1) for the case of n = 10, p = 5 as A takes on the five values

x=0,1, 2, 5, 10. The horizontal axis from 0 to = is the range of Q (=x in (8.1)).
The vertical axis is the probability (density) of Q. The area under each curve is
of course unity. By (8.2) the area of each curve is balanced around

Mg = (a+p)/(n-p-2). Thus for the A = 0 curve, the mean of Q is at 5/(10-5-2) =

5/3 = 1.67. MWe see that, as A increases, the main mass of a distribution moves

to larger Q values until at A = 10, M is at (10+5)/(10-5-2) = 15/3 = 5. At the

same time it is clear that the variance, or spread of the mass about p, increases as

Q

A increases. From (8.3) we find that 06 = 80/9 for » = 0, and 06 = 600/9 for x = 10.
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This enormously accelerated spread of Q as A increases is understandable from the

unit circle diagram for cot2e (cf §7).

1S5S cot ® 5

- As we saw above in paragraph D, small e means large cot2e = Q. At the same time,
small random changes in small & can result .in enormous changes in cot2e. Hence as
A increases, and 02 is fixed, the vector y is drawn down to Ep and held there at
small 6 on the average. But now the random perturbations of X B by e produce
relatively great changes in Q from one realization to the next, i.e.,

dQ = d cot?e = -2 cotecsc2ede. This sensitivity of Q at small e (high Q) to changes
in 8 could be used to test effects of changes in p on a hindcast. Figs. Q-1 to Q-5
show the rapid shift in probability mass as p increases from 1 to 7 for fixed

n =10, for all five cases of X from 0 to 10 shown. The graphs warn us at the

same time about the relatively great spreads of Q readings possible when n and

p are relatively close. Notice in particular as in Fig. Q-5 the spread in Q when
n=10, p = 7. This is anticipated from (8.3) by the presence of n-p in both
factors in the denominator. This spread increases with increasing x as seen in
both sets of Figures Q-1 to Q-5, and Q-6 to Q-10. This spread is dramatically
smaller when A = 0, say. Hence a tight cluster of Q readings around 0 indicates
poor hindecast fits in a low signal to noise setting. The larger the \ the larger

will be the spread of @, and the better the fittings on the average.
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2) Consider next the properties of ineptness. Fig. I-0 should be compared

with Fig. Q-0. The curves present clearly inverse characters. Now ineptness
quickly decreases in Fig. I-0 as X increases from 0 to 10 in five cases. The
spread of I decreases as X increases. 4 tight set of I readings around 0 indicates
good hindecast fits in a high signal to noise setting. The smaller the )\, the
larger will be the spread of I, and the less good the fittings on the average.

The sharp rise of the pdf for I in Fig. I-1 for the case n = 4, p = 3 is indicative
of a singularity at I = 0, as may be seen from (8.4). For in this case we have
(n-p)-1=-%, so PI(x|4, 3, 0) +w as x -~ 0, but in an integrable way so that the
area under PI(x|4, 3, 0) is still 1. Observe also that for n = 5, p = 3 we have
L(n-p)-1 = 0, and so PI(x|5, 3, 0) »a #0, i.e., its 1imit is a finite nonzero
quantity. (The high-rise curve in Fig. Q-1 is an example of Q's singularity for

p=1. This is PQ's only singularity, while PI has one whenever n-p = 1).

3) Consider finally the classic skill S.

Fig. S-0 contains curves of PI(1O, 5, ») for five choices of A =0, 1, 2,
5, 10. The curves were drawn from numerical values based on (8.7). The range of
S is (0, 1). The curve for x» = 0 is symmetric whenever n = 2p and of the general

form:

AR T _ %(n-p)-1 Cth y=
PS(xIn,p,0) = ‘/z%ﬁ’pﬂ L2125 (8.7 with 1=0)
As n » », and we fix p/n = So, the mean g = So stays fixed and curve becomes more
peaked (cf (8.12)) and can be shown to approach gauss' curve. In general, for any A
as n - = and we fix p/n = So, the curves will approach the gaussian bell shaped curve.
This follows from an examination of the higher moments and the central limit theorem.

In general, for fixed n, p, as X increases, the mass of the S readings shifts toward 1,
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as expected. In the sets of curves shown in Figs. S-1 to S-5, we see the effect
of increasing A on moving the originally disparate curves in Fig. S-1 to near
conformity in high skill in Fig. S-5. In Fig. S-1, incidentally, observe how
for p =1, n =10 the mass of S is very close to 0. As p goes up through the
ranks through 2, 3, 5 and 7, the curves' maxima move steadily toward 1. In the
set of Figures S-6 to S-10 we watch the effect of increasing A on various choices

3. The curve for n =4, p =3 in Fig. S-6 has an integrable

of n for fixed p
singularity at x = 1, as may be seen from (8.7). There is also a singularity
of PS when p = 1 (see Fig. S-1 and the interesting case of p = 1 in Fig. S-4).
The set of curves, S-6 to S-10, as well as S-1 to S-5, are particularly in-
structive in showing how, for fixed p, the classic skill deteriorates as n
becomes larger, regardless of the size of A. The latter, to be sure, for large
X, holds back this deterioration as n increases, but only by varying amounts
does it stay the inevitable decrease of the average S to zero. Equation (8.10)
expresses this phenomenon succinctly, but only approximately and for A not too

large.

9. The Mean Signal to Noise Ratio A

A. Introduction: The signal to noise ratio A = ||X8||2/0% ostensibly

depends on the data matrix X and the underlying physical process'Greens'

functions (cf §2). It also depends on the dimensions n, p of X and B. We shall
now show that under normal working conditions we cannot let A and p vary
independently of each other without incurring problems of interpretation and
application of the theory of the performance index pdfs studied in §8. It will

be recalled that in 58 we allowed all three parameters n, p, X to vary indepen-
dently as we explored the geometry of the regression setting. This was permissible
in that more or less abstract setting. But now we consider ), as defined, and

the implications of its connections to X and g. This will lead to the introduction

of * = \/p.
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B. Principal Representation of A: Using the theory of §5, let

SLJ., j=1, ...,p,and e., j=1, ..., p be the eigenvalues and eigenvectors of

J
the symmetric matrix X'X. Define the nxp amplitude matrix A= X E, where

.
E = [g], s 4 gp], and then the nxp basis matrix B = A L *

(295 +ovs SLp). If A=[a;, ..., gp] and B = [by, ..., Pp]’ then we have

, where L = diag

respectively the principal component and singular decomposition representations

of X:

X = A€ = BUE' (9.1)
which in vector form become
P P
K=l Q.QT. =0 z?_t_)_._e_.T (9.2)
j=1 JJ j=1 g

where B, E are orthogonal matrices, i.e.,

I gl B
Tl L b, Ej dij » 1, 3=1, ...,p (9.3)
The vectors B = [by, ..., _b_p] are an orthonormal basis of Ep. We use them in §2

of appendix A. (For simplicity we drop the subscript p from gp).

We may go on to use this representation to write

where Bj = gg B is the jth component of g relative to the basis E, the one used to

give EOF representations of the spatial extent of the data matrix. The quantity

| |X8]|? used in the signal to noise definition can now be written (using (9.3)) as

47
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2 = ¥ 2 2
[1X[]2 = (X8)'(X8) = (= 2Z85bs) (X  2¢Byby)
Jj=1 k=1
p
=3 2,82 (9.4)
j=1 P R
Hence we derive at the principal representation of A:
P
A = ||Xe||2/0® = £ (&./02)82 [9: 63
j=1 J J

C. Geometric interpretation of the principal representation of A.

The representation in (9.5) has the following geometric interpretation,

relative to the linear regression diagram in §6. On the one hand the n
dimensionality of the diagram in §6 arises from the sample size n taken in
gathering up the n components yj of y. On the other, the p points in space
(over the ocean, atmosphere, etc.) where those n samples are taken have, at

any moment, associated with them p values xij’ j=1, ..., p (a row of X) which
we could plot as a point in a p dimensional space. There would be n of those p

dimensional points (or vectors), and we schematically show them in the diagram

below for the case p = 2.

X
2

& +

1 <+ ;/

* *

* 5 et
+ Y i R

g o + 4 X]
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We show in particular the two basis vectors €5 & which resolve the n
row-vectors of the data nxp matrix X into their principal components. The £]
and %, are the variances of the data set along these orthogonal principal axes
€y &5 Thus the dimensionless ratios zj/o2 are ultimately where the signal to
noise ratio resides, namely in.the comparison of the principal variances of the

p time series in X with the variance o2 of the noise €. The values B% are intrinsic

properties of the physical system and are presumably independent of X and e

(cf (2.7)).

D. Introduction of A: We now recast (9.5) as

x = pX (9.6)

where we have written

¥ 1

23 dhso
X for (zj/o )Bj (9.7)

. ™M O

d
P 5oy

thereby defining the mean signal to noise ratio. In any given physical setting
from which we can draw p time series out of a large reservoir of time series, of
fixed sample size n we know intuitively that x (despite the various fluctuations
encountered as we draw from that reserve and increase p and continue ta reckon the
resulting Xx's, i.e., we know that 1) will remain generally in some relatively small
interval of values. The Bj’ being Greens' functions, essentially of the kind in
(2.2), also present a more or less spatially homogeneous variation with j. There

are fluctuations of the Bj with h, of course, but the mean or average of these
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values together with those of zj are expected to be relatively steady as p
increases. In this way we argue that the signal to noise ratio A should be given
an explicit lincar dependence on p, particularly for the purpose of exploring

changes of the performance indexes under changes with p or X.

E. Some Immediate Consequences of the Definition of A

Let us return to the closed forms for Hy? °2Q in (8.2), (8.3) and use in

them the representation A = px for A. We note first of all that

__X+p _ p(1+1) _ E.%lﬂ)____.
n-p-2 n (1-p/n-2/n)

For n large compared with 2, we can write this approximately as:

s,(14%) s (14%)
u = —
Q 1—50—2/n 1-50

i

= q,(14%) (9.8)
Here So = p/n, and Qo = So/(1-SO) = p/(n-p) (9.9)

The definition of Qo is suggested by the general connection between S and Q in the
Table of §7. That (9.8) arises so neatly this way, with its connections to the
case of x». = 0 (i.e. Sy° Qo)’ is a good sign that (9.7) is a natural definition in
the linear regression hindcast context. Except for the condition on n, (9.8) is

exact. Equation (9.8) states that u, grows linearly with the mean signal to noise

Q

ratio A.

We consider next (8.3) in which we substitute px for A and find
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, _ 2lze(ne2) (2aep)] . ALSTRH(-S,(FR5)]

°Q ~ In-p=212[n-p-3] ~ n[]—So-Z/n]2[1-50-4/n] (9.10)
If n is large compared to 4, then we can write this as
[S2(1+x2) + 2S ]
. 2 0 0
06 = ﬁ' d []_So]—g (9.]1)
= 2. q,(1+Q,) [0, (14X2)+2X(1+Q,)] (9.12)

From this we see how, holding n, p fixed, 06 grows parabolically with i, or
alternately 06 decreases as 1/n with increasing n for fixed S0 or QO. This latter
fact is in accordance with large-sample theory. The p-dependence of 06 is now
essentially in the QO (cf (9.9)), and we can see rapid growth of 06 with p holding

n, » fixed.

10. The Monte Carlo Skeleton of Linear Regression

It is possible to explore the linear regression problem by means of a
Monte Carlo simulation of the noise vector e added to a fixed signal vector
u = X B. No restrictions need then be imposed on the distribution of ¢ in order
to gain an insight into the corresponding behavior of y, l_é) and any of the

performance indexes associated with these vectors. We outline the proof of this

possibility in three stages.

A. The Standard Gaussian Case

To see how the simulation goes, first of all in the standard gaussian case

(§5B), recall the regression diagramin §6. The vector X g is fixed in E,- ToX
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is added the random n dimensional vector e to yield the observation vector y.
The representation of X B as a vector in En can be simplified by a rotational change

of basis of the kind adopted in the derivation of the x2 distribution in §3 of

Appendix A (Stage 3 there). Thus the diagram of §6 becomes:

N w

/

el Io
" e o - e - — o am ey o ———— — ———— .

M ? . L p

That is, the vector u = X B is now aligned along the first axis of En' If we adopt
the coordinate frame B = [@p En-p] used in §2 of Appendix A, we can use the
independent gaussian variates dj, j=1, ..., n, defined there to simulate the random
activity in the diagram. Let § = (6], e 6n)T be the vector of uncorrelated
zero-mean unit-variance gaussian variates. Then ||X8||2/02 = u2/02 = u2 = ) the
signal to noise ratio for the present set up.

The Monte Carlo simulation of ﬁ_é.in this frame is then

(10.0)

|>=<
j™
—~
% 3
a4
O
—
N
=g
—
o
(o)
N
o
+
+
O
=

and that of y is

(10.71)

=<
i
p—
=
-+
(o)
—_—t
S
o
o+
O
o
nNo
-+
5k
(=]
o
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Further we have the simulations

£ = a]g] i crvopii spgp (10.2)
Eqtpe apﬂ gpﬂ oot s gn (10.3)
& e Epip (10.4)
Thus we can write y as
¥ = (utsy)by + +6pgp+[<sp+]b + *ag b ]
= X B+ Ehip (10.5)

as usual (cf. (4.2)). It is easy to check that squares of lengths of the above

vectors use only the squares of the appropriate Gj occurring in their representations.

Thus, e.g.,

T

[1X6]12 = (X8) (XB) = (w+o;)2 + 63 + ... + 82

’
2 = = 2 2 2
|l e iy milisy )28 R LT R

The Monte Carlo representations of the performance indexes in §7 are then given as:

- (ut8y)% + 65 + ,,, + 62
Qn.p.a) = [[Xe]2/[le, ol I2 = P (10.6)
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- (uts;)2+82+. . .+52 10.7
e . L bl
(u+5]) +52+,..+ap+(6p+]+...+cn)
(u+6,)2+82+. . +52+ (42 +...+52)
- = 1 2 p ' ptl n
G, 1) = 2 2 (10.8)
(P22 = [1y]12/11g,,, || St
ptl n
) 62 1+...+82
I(n,p,2) = Hlep_pl12/11X8] 12 = il > 2” = (10.9)
+...
(u+sy)2+63 p
62 . +...+62
+
R(npad) = gy pl(2/11xl12 - B0 - (10.10)
(u+5]) +62+...+6p+(6p+]+...+6n)
{ (u+s )2462+. . +62+(62 +...+62)
Un,psx) = ||yl ]2/]]X8] |2 = il - JZZ p”2 L (10.11)
(u+6])2+52+---+5p

To operate these simulators: For each realization of say (10.6), generate the n
realizations dj, J=1, ..., n. Then perform the remaining indicated operations in
the numerator and denominator of (10.6). Repeat as often as desired. Collect

the results and statistics as required. Observe carefully how the n realizations
6], - NS Gn are used in the fractions. After many such realizations the values of
Q (say) will spread out on the positive real line (0,») with a density that
approximates that given by (8.1), and the averages of Q in the simulations will
approach that given by (8.2), etc. In fact, our analytic and algebraic derivations
of the formulas in §8 were checked using (10.6), (10.7), (10.9) in thousands of
realizations for each formula. This check also served to show how relatively
cheaply the Monte Carlo simulations of regression settings can be carried out.
Many interesting experiments are suggested by the formulas (10.0) - (10.5) and

those in (10.6) - (10.11).
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B. Correlated Gaussian Noise Simulation

A moment's reflection on (10.0) - (10.11) will suggest that their formulations
are applicable, as they stand, to more general probability settings than the standard
one. To see this, consider the rotational realignment of the axes of Ep to place X B
along the first axis in Ep (and hence En)' This realignment does not cﬁange the
correlation properties of the population of vectors e, provided we rotate the ¢

vectors along with the frame as we make the desired alignment. Thus if M is the

orthogonal matrix used in going from (A22) to (A23), and the present version of

(A22) is

|72
= e

.Eg—357? exp {- %(5:3) C (x=)}

where C is the population covariance matrix of the noise vector e of current interest,

then clearly since,

(x-0) T €71 (x-) = DM (o) TTEMTOMT™! M7 (%) T

we would use the covariance matrix ﬂIgM_in devising the simulation calculations in
any of formulas (10.0) to (10.11). The generation of gaussian variates with a
given covariance matrix mfgm is easily effected. In this way we could generate
several thousand trial values of Q, say, and get an impression of their mean
values ”Q and their spread 06 and so on, when the noise is correlated.

There is an alternate Monte Carlo approach to finding the pdf of any
performance index in the case of correlated gaussian noise. This is based on
knowledge of the covariance matrix C of the noise and particularly on its square
root matrix S, where §_§T = C. We use the canonic skill Q and the developments

in §5 to explain the method. Suppose the data matrix comes to us as W and the

residual noise vector is §. Then <§§T> = C. Moreover, Y = §f]H3 e = §f]§_are
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respectively the new data matrix and uncorrelated noise vectors, with the latter
having zero mean and unit variance. The canonic skill in this uncorrelated setting
is Q = |LX£||2/||§n_p||2, by definition. Since o2 = 1, the signal to noise ratio A
is simply ||Ya||?zu2. The Monte Carlo simulation then proceeds as in par A above.

Gne T _ i
Thus, the vectors Ya = [(u+6]), 62,...,5p] and e 1 == [6p+],...,6n] are formed.

P
Then apply S to the vectors Ya, . to form S(Ya) and §jsn_p) and thus the quotient
Q' = ||§KY&)1|2/||§j§n_p)||2, which is the canonic skill in the original correlated
setting - since SY = W and S g _=$ In this way each realization of the

< Sep =P
uncorrelated unit-variance variables 6],...,6p yields a realization of Q'. Many

such realizations can be used to build a histogram, i.e., a finite approximant to
the pdf of Q'. Observe that this procedure could assign a meaning to A where it
would not, prima facie, exist.

C. The General Case

The foregoing observations suggest that the Monte Carlo representations
(10.0) - (10.11) can be used for any random noise population provided the pdf
for the population is known in sufficient detail so as to allow a simulated
sampling via the usual Monte Carlo techniques. Moreover the pdf should allow a
rotation of itself into the preferred alignment of X g along a particular (say,
the first) axis of the coordinate system for En. Even the latter rotation is no
longer needed if it becomes too arduous to perform the rotation. What would be
needed inthisevent is the set of the n components of X g in the B-frame of E . If

Ypis (u], fees M Oposzds O)T are these components, then (10.0) would be replaced

by
A p
XB8=1 (u;+s.) b, (10.12)
—j J J

and (10.1) by

n
y =1 (u,+s.) b, (101 T2)
j J
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The forms of (10.2) - (10.4) are unchanged. However, the original, simple notion
of a signal-to-noise ratio A no longer exists and we drop it from the notation.
The simulation of Q, for example, would then be accomplished by the following

generalization of (10.6):

p
pX (uj+6j)2
o al|2 R R RN Y R
Q(n,p) = ||X8]] /llgn_pll . (= 1/1(n,p)) (10.13)
z 5%
j=ptl
The 85 +vs 8 would now be randomly drawn repeatedly from the n-variate population

with the given pdf. As another example, (10.7) would become:

P
T (usts.)2
: A (10.14
S(n,p) = |18]12/]1y112 = 4 g !
pru (T 1 2 82
s ¢ g
136 Estimating the Signal to Noise Ratio A

We have seen throughout the studies above the central role played by the
signal to noise ratio A. It is therefore of some importance to determine A from
hindcasts of real data. We shall now consider two methods leading to the
determination of confidence 1limits for A. The small-sample method is covered in
pars A, B. The large-sample method is described in par C.

A. Confidence interval for A via canonic skill— small-sample theory

Let us return to the pdf for canonic skill in (8.1). Select a value for
n and p. Choose a value for the mean signal to noise parameter Ax. This then fixes
A = pr (cf. (9.6)). Choose a confidence level (1-a) 100%. One can then find the

o(%a) and o(1-%a) values of Q such that*

* Formulas for the determination of these integrals are given in Appendix B.
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o (%a)
/ PQ(xln,p,A)dx = 3o (11.7)
0
o(1-%a)
/ PQ(x|n,p,>\)dx = 1-%a (11.2)
0

If we repeat this determination of o(%a), o(1-%) for a selected set of A values
(for fixed n,p) then we can rough-in curves (as accurately as we wish) of

o(%a), o(1-%) as functions of X. Let the results be as sketched below:

2 axis

We know from (9.8) that the mean value of Q rises linearly with A. The
curves for o(%a), o(1-%), as suggested by (9.10), will diverge parabolically from
the straight line for UQ' Again by (9.10),it is clear that this departure from
the HQ line can be made arbitrarily small for n chosen sufficiently large, for

a given fixed ratio So = p/n or equivalently Q0 = p/(n-p).
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Suppose now that we have a value Q from a hindcast with the given n,p of
the diagram. Draw a horizontal line through this value of Q and determine the
A-values of the intersections of the horizontal line with the o(k%a), o(1-%) curves.
The resultant values X&, Xé determine the confidence interval for A. That is,
with confidence* (1-a)100%, A is in [X},Xé]. By our observations above, [X&,Xé]
can be made arbitrarily small for n sufficiently large for a given ratio p/n = So'
Hence the method in principle can pinpoint X if there is enough of a data stretch

over which we have a stationary setting.

B. The use of any performance index to find the confidence interval for A

The observations in par A may obviously be extended to the use of PS or PI

in §38 to find [X},ié]. The relative capabilities of P., P., P. in this regard will

QT TS

not be studied here.

C. Large-sample estimates of A

The large-sample method is derived from the following facts. For a given
n, p, A, the canonic skill Q of a hindcast model y = X g8 + ¢ is distributed in a

known way, such that the population mean of Q is

>

9 _f%___ (11.3)

=)

"q

and the population variance of Q is

* Proof: In the diagram, if the true value is A, then (1-a)100% of all the
horizontal lines randomly drawn through the axis of Q values will fall between
the dashed lines formed by the %a, 1-%a points of the pdf at X. Therefore, if
X is the true value, then horizontal lines drawn through realized Q values will

produce intervals [X}, Ké] such that A will be in [i},ié], (1-2)100% of the time.
This is the correct interpretation of [%],%2]-
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2{2%+(n-2) (2x+p)}
02 = : p (11.4)
Q [n-p-212[n-p-4]

as we see in (A55), (A58).

If we apply the model y = X B + € repeatedly to independent data and
observation sets X, y, and compute in each case Q = ||1§J|2/||En_p||2, we obtain
a set of (say) m Q-values which, in the 1imit of an infinite number of such
independent trials (i.e., m + =), are distributed with mean HQ and variance 06.

Therefore, the statistic Z determined by any finite sample of size m:

Z = (@ug)/Log/m?] (1.5)
where,

! (Qp+...+Q,)

L
n

is distributed approximately normally with zero mean and unit variance. The
larger the m, the closer the approximation. This fact follows from an application
of a simple form of the Central Limit Theorem (Hoel, 1954, p107).

To apply the foregoing observation, decide on a level 1-a of confidence.
Let Z%a be the two-sided normal pdf limit associated with 1-a. Then for a sample

of sizem, Q = m-](Q]+...+Qm) isiknown. uQ and oQ are determined by p, n, but
with A unknown. Hence we have the bound-condition on A given by

= =1
-1, <(Q-uQ)/[on ol 2y, (11.6)
In principle we may now vary A in (11.6) until those two values of A are found that
make the statistic Z take on the two extreme 1limit values * Z%a. These two values

of A will form the desired ends of the confidence interval for the true X.
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We can solve for these A values by setting

i R
OQm = 2
so that
z 2{32+(n-2) (2x+p)} 1
g-22 - ‘/{‘[ ] (1.7)
P m2 L [n-p-2]2[n-p-4]

It is easy to see, at least in principle that, for sufficiently large m, two

roots Aps Ay of (11.7) will exist. Thus in the diagram below is a sketch of the
straight line generated by varying A in the left side of (11.7). Letting A vary
in the right side of (11.7) produces two parabolas, one for each sign. These are

sketched as the two curved lines in the figure below.

plot of left side of (11.7)

Plots of right side
of (1}.7)

~(n-2)[1+(1 +-25)] ..
1 / A= (n-p-2)Q-p
o) e (

root of left side of (11.7))
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The parabolas meet the straight line at abscissas Ays Ao the desired confidence
limits of A. The estimate A = (n-p-2)Q-p of A always lies in the interval

Ly Az]. Clearly by (11.3), > = <(n-p-2)Q-p> = A, and so A is an unbiased
estimate of A.

We now can see that the intersections at A], A2 will always exist for a
giver n. n, since mi/2 in (11.7) can be made arbitrarily large, thereby producing
parabolas tna¢t are arbitrarilv shallow, and hence, by their intersections with
the straight line, produce an interval [A], Az] about ; that is arbitrarily small.

A mechanical procedure for determining A], Ao is given as follows. Rearrange

(11.7) into the form of a quadratic equation:

(d-1)a2 - 2(dr+(n-2))x + [dr2-p(n-2)] = 0 (11.8)
m .
i . [n-p-2]2 T i
where d p Freped] e (n-p-2)Q-p
b
Hence
4 -b (b?--4a)1/2
e (11.9)
2 2a
where
a = d-]
b = 2dx + 2(n-2)
¢ = dA2 - p(n-2)

). Monte Carlo tests of Large-Sample Estimation Procedures

A practical question arising in the use of (11.9) is: how large must m be
in order to make (11.9) a useful generator of the confidence interval [A],Az]?

A Monte Carlo procedure for testing (11.9) is given below in nine steps. The
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method uses the representation (10.6) of Q.

1},

Fix n, p, A, choose m, q (defined below).
Fix the confidence level 1-a and hence %, Z

L
Compute m realizations of Q = [(u+e])2 + s% +...+€§]/[epi]+...+e%]
(A fresh, randomly chosen batch of variates Eys--ts € is used for
each realization).

Compute Q = m'](Q]+...+Qm) from the result in 3.

Compute A Ay from (11.9).

Check to see if A is in [A], Az].

Repeat 3-6 a large number, say 100q times where q =1, 2, 3, ....

Make a tally of the number of times out of 100q that A is in [A], Az],

in step 6 (If, e.g., a = .05, then A should be in [A], Az] 95q times).

(Optional) [Conduct a Kolmogorov-Smirnov test on the empirical
distribution produced by the 100q realizations of (6¥uQ)/[on'%] = 7
to see if it may be judged to be normal with zero mean, unit variance.
In particular, how large should m be to allow us to conclude that Z is
so distributed, with a given level of confidence? The result of such
tests would allow us to decide on useable values of m and to have an
idea of how good such a value of m is in providing normality.]

63
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12s Model Significance

A. Solution of the problem

The probiem of model significance, defined in §1B, can be solved by the
technique described in §11A. It is clear from the diagram in §11A that if we have

a value Q' from a hindcast which is such that in [5%?5],3% = 0, then with confidence

(1-a) 100% the value A = 0 is in [0,?5]. In other words, if Q' falls in the heavy
interval (in the figure) associated with A = 0 (and hence A = 0) the model is not
significant, and this judgment is reached with confidence (1-&) 100%. This procedure

can be effected by programming (11.1), (11.2) using (A48) in which x» = 0.

B. Equivalence with Barnett and Hasselmann

The preceding criterion of model insignificance, namely K} = 0, is equivalent
to Barnett and Hasselmann's criterion that g = 0. For if ||X8||%/0% = x» = 0 and X
is of rank p (as it usually is taken to be in hindcasts) then it follows* that
B = 0. Conversely a zero B vector implies » = 0. The procedure of Barnett and
Hasselmann is based on (A44): The quantity é is found; B is assumed zero by

hypothesis. Then, if ||_é__||2/c2 does not exceed the (say) .95 significance level

of the x2(p) distribution the model is judged insignificant.

C. Generalized Barnett and Hasselmann procedure to find confidence intervals

The procedure of Barnett and Hasselmann can be generalized as follows. Let
r= [[éjlz/oz. We use (A25) to construct o(%a), o(1-%a) curves via a selected set

of X values and given n, p. Now A = Ao/p, A, as in (A43). From (A43), (A30) we have

* One may see this also from inspection of (9.5). All the terms in the sum are
non-negative. Hence if the sum is zero, and the p values 2j are not zero (this

is the rank condition in another form) then necessarily the Bj are 0.
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. = A+p = p(1+3)
so that the mean value of r rises linearly with A for fixed p. Moreover, from
(A33) we expect the o(%a), o(1-%a) curves to diverge approximately linearly from

u. (since o% = 2p(1+2x)). A sketch of the curves is given below.

e G

2 axis

In a hindcast ||éj|2/02 is determined. A horizontal line through this value fixes

the (1-a)100% confidence interval for A, namely [XviéL If », = 0, the model

1
is judged insignificant. Otherwise, we can then estimate [K},Xé] of the significant
model.

D. Further generalizations

It should be noted that the parameter o2 in the above procedure must be
known. (Barnett and Hasselmann in effect find the entire matrix <§ET>.) Otherwise
02 must also be another population parameter to be estimated. In this event, the
generalized procedure of par C must.be amended: An unbiased estimator of o2 is

||En_p||2/(n-D), which follows from (A18) and (A30) (for A = 0). From (4.15) we see
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oy g+ (f%"‘f%o'T
XX=1 , th =g +

257 o en g =8+2X 0
to show the independence of Ep

hindcast information:

five [lléJ|2/02]/[lIgn_pllzl(n-p)ozl = [18112/01 [y=X8] 12/ (n-p)]

The numerator is distributed independently of the denominator.

The first numerator's

If we adopt the orthonormalized data matrix X, i.e.,
€_. This coordinate frame was used in §2 of Appendix A

and En-p’ Hence we can form the statistic n from

(12.1)

distribution (cf (A43)) is x?(p,||8||2/02), the denominator's distribution is that

of a variable Xo/C, Where x, ~ x2(n-p), cy = (n-p). Therefore, the distribution

of n is given by H' in (Ad47a) wherein, c

=],C2=

1/(n-p). Moreover ky = Ps ky = n-p. Ay = | 18] |3/02 = pX], A, = 0. That is,

H'(T’I|Ps n-p, >\'|9 09 ]/(n‘P))EH'(n). Thus

T (r+sn)

[n/(n-p)]""%"]

1

ri " T(r#p)T(%(n-p))

[1+n/(n-p]" 2"

(n-p)

(n-p), so that y = c]/c2 =

(12.2)

We may now compute o(%a), o(1-%a) from (12.2) for various choices of i}, thereby

forming confidence curves as before, and making a diagram of the kind shown below:

from (12.2)
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The determination of the confidence interval is shown in the diagram for a given value
n. If an n from a hindcast falls in the interval [o(%4a), o(1-%a)] associated with

K] = 0, then the model is not significant. This judgment can be reached directly

(as in par A above) by computing in this case these o-limits via (11.1), (11.2)

from (12.2) in which A = 0, i.e., from

Ny

r(4n) [n/(n-p) 121 1
r(p)r(s(n-p))  [1+n/(n-p)1*"  (n-p)

H'(n|p,n-p,0,0,1/(n-p)) =

This is a special form of Fisher's variance-ratio distribution (cf Rao, 1973, pl167).
The more general problem of finding a confidence interval for Ay uses (12.2).
Therefore, a computer program should be available for working with the general

case (12.2) and thus incidently, (12.3).

13. Model Significance vs. Model Skill

We can now make some final observations on the relatively inverse behavior
of the properties of model significance and model skill: that is, how, in trying
to increase one, we necessarily decrease the other, statistically speaking. This
may be seen using a set of confidence interval diagrams of the kind introduced in
§11. The changes in the diagrams below are the result of increasing the number p
of predictors, holding the number n of samples fixed. The changes are observable
for a continuum of mean signal to noise ratios A, and are based on the suggestions
in (8.1), (8.2) as to how the mean Mg behaves and on how the o(%a), o(1-%a) curves

behave with changes in p.
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fixed n

small p
n-p>2

fixed n

medium p
n-p>2

fixed n

large p
n-p>2

A. Significant-model strategy

In diagram a), p is small relative to n. An observed high value of canonic
skill Q produces a pair of A valueswell away from O on the A axis and we have a
highly significant model. Holding n fixed but increasing the number p of predictors
generally raises the average Q at each A, as in diagram b). The increase in p
also spreads the o(}), o(1-%a) curves away from the straight Hg line. Hence the
same high Q in a) is now less spectacular probability-wise and still very good:

but the confidence interval for A has moved toward 0. Finally in c) p has been
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increased to a relatively large value just under n. The higher-spread Q values
for this model now are very probable and engulf the same Q of the preceding two
cases. Thus the Q is as good as before, on an absolute scale, but it is

probabilistically mediocre. Moreover, it can be produced by a non significant

model, since the confidence interval now includes 0 on the X axis.

B. Significant-skill strategy

There is a complementary way of seeing the above phenomenon through the same

general diagrams. Now they are sliced vertically by a fixed mean signal to noise ratio A.

fixed n

small f
n-p>2

fixed n

medium p
n-p>2

fixed n

large p
n-p>2




§13

In diagram d), the small p/n ratio with the given X produces a uQ(=ﬁ) as shown.
Compared to models with X = 0, this is a very high Q score. It is highly
significant. In e), p has increased so that we have an even higher ) than
before, but relative to the x = 0 model's Q scores, it is not as impressive (yet
still good). This is because “Q is just outside the significance interval for
X = 0. For the choice of p in f), where p is quite near n, Mq is considerably
greater than the two previous uQ's, but now it is quite indistinguishable from

run-of-the-mill Q scores produced by a model with =

C. The complementary model, skill strategies

Both sets of diagrams show the scientist how to increase the number p of
predictors while monitoring model skill or significance: In diagrams a)-c) the
underlying A is not known. But the scientist has a certain significant level of
canonic skill Q he wishes to achieve by a model he wants to be significant. He
then increases p until that Q is still produced by a just-significant model, i.e.,
X} is still greater than 0. In diagrams d)-f) the scientist knows or has estimated
X. He knows the model is significant. He wishes to maximize the probability of
occurrence of the model's average skill level Q and yet know that Q is produced
only by a significant model. So he stops the growth of p just short of where

a(1-3%a) engulfs M

D. An indeterminacy principle

There is an indeterminacy, as we have just seen, in the skill and
significance of a linear regression model, wherein any attempt to increase hindcast
skill is offset by a move of the model toward insignificance. The sample size n
sets the background over which these antithetical tendencies of skill and signifi-

cance move. The greater n, the sharper is the background and the smaller the
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uncertainties induced by changing the predictor count p (recall 06 in (9.12)).
Let us measure this background uncertainty by the reciprocal of the norm of the

n-vector & |}

]
el |2 (k3.1)

Out of this background chaos we split apart two opposing factors: one factor
represents the viability of the model, a meld of all the skill measures of §7;
the other factor represents the significance of the model, a measure, as its name

implies, of its roots in determinacy. Thus we split (13.1) into

] | |Xe] |2 1
= - - (13.2)
lell2  lell2  |1xe]|2

= (viability)-(significance)

The viability factor, asa reference to the linear regression diagram in §6 shows,
uses the numerator of classic skill S, and the extension (llgpll2 o ||§n_p||2) of
the residual noise ||§n_p||2 used in the denominators of the canonic and coskills.
The significance factor uses the estimate of the signal ||XB||2 occurring in the
signal to noise ratio ||XB||2/02. We now see that, as n is held fixed, an increase
of the number of predictors p will increase the viability of the model and decrease
its significance; and conversely, decreasing p will decrease its viability but
increase its significance. The product of viability and significance is a fixed
random variable whose variance is a measure cf the statistical uncertainties

produced by the background noise.
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The split in (13.2) is not unique. But any way one cares to split
1/]]e||?, using p-dependent pieces, one comes up with something 1ike a viability

and a significance, to wit:

1 NEARE.

el Tell? - 118l1?

(13.3)

= (viability)-(significance)

E. The roots of indeterminacy

The preceding examples of indeterminacy are somewhat forced and artificial.
Nevertheless they and their immediate variants cannot be formulated without the
statistical tendency for various quantities in EP to spread as p increases. For
example, the most fundamental manifestation of this spread is evident in the
series of graphs of pdfs for Q (the series of Figures Q-0 to Q-10). In the sub-
series that shows how (for fixed n, A) the pdfs spread their Q-mass on the
interval (0, «) with increasing p, we see the indeterminacy at work in its most
basic way: in order, as p increases relative to n, to let Q reach the higher
values, the sharp Q-distribution peaks for small p must be replaced by the broad
shallow Q-humps for large p (recall (8.1), (8.3)). At the same time and for the
same fundamental reason, the random quantity ||éj|2 on the average grows as p
increases (recall (A33), (A43)) simulating a random walk in spaces E_ of ever

Y
larger dimensions, making the location of B, relative to 8 , harder to pin down.

14. Description of the Tables for Q, I, S Significance Levels

There are three sets of tables: one each for Q, I, and S, the canonic skill,

ineptness, and classic skill, respectively (cf §7). For each of Q, I, and S we
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list o(05), 0(95) and its mean on separate tables, for a variety of p, n, and
values. The X values are 0.0, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, and 2.0.
For example, consider the tables for canonic skill Q. Let x = 0.0. Then

there are three tables given for this value of A: one for o(05), one for Q, the

mean of Q, and one for o(95). For example, the table for o(05) of Q lists p values

across the top and n values down the left side. The tables were made using (B2)

with (11.1), (11,2), and setting «=0.10. For instance, still with Q, we find

o(05) = 0.288 for n=6, p=4, Ar=0.0, while o(95) = 38.494 for the same triple of

parameters. Note that the mean Q does not exist for this triple (because we must

have n-p>2; recall (8.2)). However, Q exists for n=8, p=4, 1=0.0 and is Q = 2.000.

The tables are included to show in a preliminary way the ranges of the 5%
and 95% significance levels for the random variables Q, I, S under the assumption

of zero-centered homogeneous-variance, gaussian noise (cf (A1)). The tables are

not exhaustive, and perhaps not in their best form for practice, which would use X

rather than A (cf §9). Probably the best way for a user of the present theory to

retain knowledge of o(%a), o(1-}x) and the mean of these performance indexes, would
be not in tabular form but in the form of a computer program that would fire up the
confidence 1imits o(%a), o(1-%) at will for any triple p, n, A, within reason.

The
formulas in appendix B have been tested for n up to 50 and X up to 2.0.
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Appendix A, Derivations of the Fundamental Probability Density Functions

The derivations below are of the basic probability densities needed in the
study of model significance and skill in the present Linear Regression theory. Our
observations in §§4,5 showed that we may base all our formulas on the uncorrelated,
zero-mean, uniform-variance case. In the present work we shall therefore assume

that the noise vector ¢ is an n dimensional random variate such that

= D
{E') g’ <§_€' > o ln
it eds
<e;> = 0 i=1, e
<g.e.> = 026§,. i, j=1, o
J 1]
and in particular that:
1 1
P(eqs€ns...5e )de de,...de. = ———— exp {- —(e,2+e,2+...+e_2)}de,de,...de
172 | o g n (2n02)n/2 252 ¥ e n L2
i.e., we assume
e YN (Uil ) e (A1)

The coordinate system and units in which we work are originally defined by the

physical setting from which the data are drawn.
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ik: x* Distribution and Gamma Distribution for |[|e||2/02

The error vector € = (e], €05 wuny en)T, obeys (Al) and we wish to find the

distribution of || ¢|2 = e]2+€22+...+en2. Since ||e| % depends only on the Tength

of e and not its orientation in En’ we introduce polar coordinates in En:
e] T £ cos¢]

€y = 1 sin¢] cos¢,

m
= T
I

=p sin¢] s1n¢2 siahe s1'n¢n_2 oS¢, 1

€ = r sing, sing, ... sing s1n¢n_]
From this,

r2 = e]2+€22+. . .+en2.
This is the generalization of the familiar case for n = 3:

m
—
I

= r cos¢,

]

r sin¢] cos¢,
Eg = r sin¢] sin¢2

In making the change of variables, the differentials of volume are related by

B(E ,e,,...,e)
degdes. . .de = — 172 T dr dgg...dg

1
O (rysdyseaist, )

n-1
r dr dQn_]
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where de _, is the differential of area of the unit sphere in E . For n = 3,
sz = sin¢] d¢]d¢2, and in E3 this quantity is usually called an 'element of

solid angle'. Hence (A1) can be written

P(e, ,e e _)de.de de = 1 exp{ﬁ} r‘n_]dr‘dﬂ (A2)
i el il ke i< (2"02)%n Y% n-1
From n dimensional geometry*
Ln

where S is the rectangle in n-1 dimensional ¢ space such that O §_¢1 <k,
i=1, ..., n-2,and O 5—¢n—1 < 2m. Integrating dQn—] over this rectangle is
equivalent to integrating the e; over the unit sphere in En. Thus using (A3) in
(A2) we find the probability element for r? = ||g||?:

1 \4%n

P(r2)d(r?) = 2Z exp {-(—)r?} (r2)1 4(r2) (Ada)
T'(%n) 20°

or

Ln

Q((r/a)2)d(r/0)2= Cls exp 1(r/0)?) Lir/0)2T™ Na(r/a)2 (Adh)

2!
n
This shows that the pdf of r? goes most naturally into the form for (r/c)2, a

dimensionless variable. So (A4b) can be written, without d(r/c)?, as:

* See, e.g., (Anderson, 1958, p176).
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x%(x|n) = ~T—J~———— exp{-%x} x -1 (A3)
271 (1n)

where we set
'x' for (r/o)2- (=]||e||%/0?)

Equation (A5) has the familiar form of the x2-distribution. Both (Ad4a) and

(Adb), along with (A5) fall under the general form of the gamma distribution:
G(x|a,p) = o exp {-ax} p-1 0 (A6)
> = F(pT p aXlX s, O<x<e

The transition from one form of (A4) to another is facilitated by the general

property

6(kz|a,p) = ¢ 6(z]kasp) (A7)

where k = 1/0%2. Another useful property of (A6) is readily verified by direct

calculation:

X
G(x|a,ptq) = [ G(y|a,p)G(x-y|a,q)dy (A3)
0

The verification requires the use of the beta function.

The connection between the x? and G notation is:
x2(x|n) = G(x|%,%n) (A9)

or in function form:
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Thus the main result of this section may be stated as

|1l [?/02 ~ x2(n)

or | lel|?/0% ~ G(%,%n) (A10)
2 1 1
o ,lall r\"G(—a /Zn)
Ro=
£ it i 2742 oL 2he2
2. x% Distributions for ||gp|| /o ggg_||§n_p|| /o

We now derive the pdf's of ||§p||2/o2 and ||§ﬂ—p||2/°2' The noise vectors
3 5B as defined in (4.11), (4.12), are n dimensional. They are formed by

projecting the n dimensional noise vector ¢ onto the subspaces E_, E EE

p’ “n-p °" Fn

The vectors €y Epop @TE 1IN Ep and En—p’ respectively, and as e twitters about in

En, these vectors Ep’ are confined to their respectively smaller dimensioned

“n-p
spaces. This almost by itself is enough to assure that e.g., gp is a p dimensional
gaussian variate, but its n dimensionality must be stripped down to p dimensionality
to be perfectly sure about this, and the uncorrelatedness of the components of
gp and §ﬂ_p in their respective spaces must be checked out before we can apply the
result (A10) of §1, above.

Consider first the matrix P. The nxn projection matrix P is symmetric

(cf 4.9b) and hence by (5.4) has a set of n orthonormal eigenvectors and associated

eigenvalues. Since P has rank p, only p of those eigenvalues are not zero.
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Those that are not Zero are all of unit value. This may be seen by operating

on an eigenvector b of P. By definition of b and x, Pb = ab. Operating on

each side of this equation, With P and using (4.9c), ppb = PAb, so Pb = A2p.
Therefore A2 = i.e., A(x-1) = 0, so that the eigenvalues of P are either 0 or 1.
Let gq, AT IS Qp be any set of eigenvectors associated with the unit eigenvalues.
This set is not unique, but can be fixed in any of several ways* (the remaining
eigenvectors also arise in an infinite number of ways* — they lie in En-p)' Note
that these Qj are in general distinct from the Zj in §4A, for the latter are

generally not orthonormal. Thus Egj = bj ol Swsh1’, . vq p. Lot Bp = [9192...Qp]

be the nxp matrix of these eigenvectors. Then gg §D = ;p, which states compactly
T g S | ; E - Ty _iod
that.gi gj = 61j, >3 =1, ..., p. Moreover, we find, EEp Bp and ng_ Ep'

Consider next the matrix I-P. -This; too, is a projection matrix, symmetric

of rank (n-p). Hence it has n-p eigenvectors 9p+]""’ gn with unit eigenvalues,

such that (g;g)gj = gj, J =EeRIgl L A D aliet En—p = [9p+]’ o Qn] be the
n x (n-p) matrix of theie eigenvect;rs. Then B -p En-p = lﬂ_p. Moreover,
(l—g)gn_p 5 En_p, and Bn_p(l_g) B En_p.

By our observations in §4A, since every gj in Ep is of the form ggj, and

b . : T =
every gj in En-p 1s of the form (le)gj, it f:]]ows that Ep Eﬂ-p 5 pr(n_p),
the p x (n-p) zero matrix; and also that gn_p Ep = g(n—p)Xp’ the (n-p)xp zero

matrix. In like manner, PB =0 ]
—n-p  —nx(n-p), (I-P)B 5ot

d - T
follow on taking transposes of each side of these equations and using P = P,

Companion relations

* To fix the Ej’ J=1, ..., p, we observe that the numerical construction of the
Qj, J=1, ..., p, can arise automatically in the singular decomposition of the
p p L :
data matrix X = 3 (o z z.ab.e.T, (cf §5A, §9). The construction of

da.e.
J'=]_J~J J=1 =)

En—p’ however, 1is not uniquely guided by the data, and may be done in any of

several ways.
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We next construct the nxn matrix B = [ gﬂ_p], and observe that

B
-

T il

B'B = BB = I il

85 =I8 [—p ~n-p] = t=px(n-p) | = L
B! 0 d
=n-p ~(n-p)xp : =n-p

Hence the n column vectors comprising B form an orthonormal basis of En' This

also means that BT and B are mutual inverses. In particular §§T = 1 also.
n

This can be verified alternately by noting that §§T = I ngg, which acts Tike
j=1

ln for every y in En' The operation BTe finds the components of the noise

vector in the new coordinate frame. Using the composite form of B, we find

3 T
B B S
BTE = _.p e = _pE. e _p = 6
=g T Gl el L i
=fi=p P —-p
i o
Here §p = (6], hrs 5 6p) is a p component vector and §n-p=(6p+1’ sn’ an
(n-p) component vector. From the orthonormality of B, we find
6_'2 + + 8§ 2 4 Gpi] Y i 6n2 = §_T§— = (_B_TE)T(ET_E_:_)
- ¢'sp’ ¢
= sTe = e]z A+ €6
s n
-

Now the transformation B' from e to § is vo]ume-presefving in B (the determinant

of B is unity —since |B'B| = [B'||B| = |B|2 = = 1). Hence the pdf (A1) of

| L,
e is identical in form for §. Thus the Gj, j=1,...,n" are pairwise uncorrelated,
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zero mean gaussian variates of uniform variance ¢2. That is

2
8 v N (0, 0% ) (A1)
and in particular Gj ~ N(0, o2) ) T R, W (A12)
d al that 8 , 02l A13
and also tha 8, Np(g_ o *p) (A13)
2 :
S Py vaNg oiHs godliy) (A14)

all of which may be read off from (A1) now with ﬁj replacing ej, J =25 U N e

Moreover, and §n— are independent.

% p
It follows from §1, in particular (A10), that

[18,112/0% ~ x*(p) (A15)
N8y pl 5 797 ~ x3(n-p) (A16)

where the subscripts on the norm bars remind us that the sums they represent run
over p, and n-p terms, respectively.

The final step observes that, from the definition of £, in (4.11),

T T
B BIp
gl =Blpe= [P | pea b 1_3_
BERE S s gl k 57 da gl
Zn-p 2n-p— 4
T N

|©
o
L= )
n
[ —
|© _éo;
——
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Hence

>
2 = 2 = 2
e 12, = 11BT egl12 = 1,112

b

and so ||sp||2/o2 is indentically distributed as ||§p||2p/02. Therefore, by (A15),

and a closely analogous argument* for £0-p° we find

| lepl12/0% ~ x2(p) (A17)
| leqopl12/0% ~ x*(n-p) (A18)
which was to be shown.
* i.e., replace P by I-P in the preceding argument, i.e., use ER e (I-P)e

from (4.12). -P
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3+« Theory of the non central x2 distribution

We now pause to develop the pdf for variates of the form ||x||2/0? where

p(g3 Ule)s i.e., x is normally distributed such that its p components are

uncorrelated but not of zero mean. While accounts of the theory of such x exist

x N

in the literature,* there is not readily available a single, simply-connected
derivation to my 1iking; and since the non central x2 distribution is crucial to
our further derivations we keep the arguments of this appendix essentially self-
contained by the observations summarized in this section. The work will proceed
in four stages: the first stage sets up the one dimensional case; the second
stage reduces the general p dimensional case to the one dimension and the central
x? cases; the third stage combines these special cases into the general; and in
the fourth stage we develop formulas for all the moments of the non central x?°

distribution.

Stage 1: Let x v N(u,02), i.e., let the scalar-valued random variable X be
distributed normally with mean y and variance g2. We are interested in the pdf
of y = x2.

Thus, by hypothesis:

1

B
P(x) dx ]/ exp{- izLEl—& dx
(21) % 202
: L
From the change of variable y = x2, we have dy = 2 x dx = #2y* dx. As x varies
1L
over (-=,») it causes the positive square root y? to vary only over (0,~) unless

L S :
we also select -y? to cover the case when x is in (-=,0). Hence the pdf of y is

* See, e.g., (Rao, 1973, p181). This reference suggested the main line of
derivation below. However, our treatment, in stage 4 below, of the problem

of the moments of x2, seems new.
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p(x)dx = = 5
(2m) %0 20 2y*
52
+ = exp 1 (-.y —ul 1 dy_l/
(27) % 202 2y*
L L
, 1 ~(y+u2)/202 [ Y W/O% 4 ¥ u/0®
= T e dy
(2m) %0y
i.e.,
1
# 2 2 Y
p(x)dx = & ;% g (y+u?)/20 cosh(y;;) dy (A19)
™) oy o

This is one form of the required pdf. However, we may place it into a form that
uses the gamma distribution, something which will facilitate Tater manipulations.

Thus, we expand the cosh term into an infinite series:

%5 r
eXEE;EI (=L .22r.(E3_)r
a

1/2 (=] [ee]
cosh (LY) = g Lurgy-p2af 20° (a)
o2 r=o (2r)! r=0 I'(2r+1)
and write
1 1
. i, . (b)
(2n) 70y 55 ¥y o
202

Moreover, using the duplication formula for gamma functions:

523-1
r(2j) = =—— - r{J)r(j+s) (c)

TTZ
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we can write

r(2r+l)

Using (a)-(d),

]

§A3

r(2[r+s])

22r
=— T{r#k)rirtl)
,n,2

(A19) can be written as

5 rogel = (JLZJP ~y/202 (y/o?) 7%
p(x)dx = e f20¢ o 20 [e o ] . d(y/d?)
r=o r! 2" 2 r(rty)
uZyr
L 208 1S 2
= /20T 297 | G(y/o? | %, rs) - d(y/o?) (A20)
£=0 | splf!
S
i -5) 2 2
= g7 /20 5 _ggﬁ___G(y|1/(202), r+s) dy , O<y<e (A21)
r=o r!

the last step by (A7).

in a later stage.

Stage 2: Let x

10 e

of variance o2 and mean Hps oo

e e -

,Up

We wish to find the pdf of s =

The quantity u2/02 will become the signal to noise ratio

» X_ be p independently distributed gaussian variates each

, respectively. That is, Xy N(ui,oz),

p
T x%/cz.
i=1

The approach we use is suggested by the following three dimensional case.
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The vector u in the diagram represents the mean position of the random vector

B T
X = (x], Xy x3) I

We establish a new orthogonal coordinate frame of unit vectors
so that the unit vector u/||u|| = Jy becomes the first basis vector of that frame.

We construct the remaining two Jp» J3s SO that M = (gq, REYEN forms a basis of

iy)
E3 in matrix form. Then make the change of variables: y = MTx. The components

of y are the projections of x on QJ, QQ, QS; hence they are the coordinates of x
in the new frame. With this change, the vector x-p in the quadratic form

(éfg)T(ﬁjg) occurring in the pdf:

— (xew) () (A22)

becomes (with u = ||u|] , ¥y = Mx = (y],yz,y3)T)=

13
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e § T
z=M(x-u) =M (x-ujs) = M'x - uM i
T “Tret :
’_il % [-J_] 9 ’_.Y]-u
. o LT,
I iZ é 5 - iz i = y2
d Tx j
S | 4371 %073 |
T T
k () "ew) = 272 = () M (x-w) = (yy-m)24 2 4 ¥4

becomes the new quadratic form in the pdf. In general then, for the case

dimensions, we find an orthonormal basis iq’ 12, oo Qp with Qq = WAl »

2 = y,2 +...+p 2, with the result that,on making the transformation y =

In this way (A22) is transformed to

| ]
———= exp.{r — )2 2 2
(21r02)p/2 252 [(y] ) Yoo ..t Yp 1}

1
o exp (- — [y.ou)%) - ! o
(2r)% 262 "1 B (ZWZ)(P‘”/Z L 252 (yp+...

Hence, since M is orthogonal,

of p

MTi A
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R N
Lalibia 1B
") )
=u+v

Thus s consists, in view of (A23), of the sum of two independent random variables
u, v. In particular, u = y]2/02 where y, ~ N(u,02), and the Ypr +oes ¥y are
independent and y; ~ N(0,02). '

Stage 3: Synthesis of Results

From our work in stage 1, the pdf of u = y1/o2 is given by (A20). From
(A10), v 1is distributed as x2(p-1). Our conclusion in stage 2 was that u and v
are independent. Thus the pdf of s is found by convolving the pdfs of u and v,

i.e., the pdf of s is, using the pdfs in (A10), (A20):

(_“_) r
_. 2Weaotie 2 S
gW /20" 5 20 G(u %, r+5) G(s-u|3%,%(p-1) )du (A24)
r=o r! o]

The integral may be reduced via (A8). In this way we arrive at the pdf of

s = x%/oz, being of the form

z
r=1

2 s D ()"
x*(s|p,A) = e * £ - G(s|%, rip) (A25)
TR NI
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where A = pu2/02, p2 = u]2 AR ”pz’ and the X; are distributed independently as
N(ui ,02).

The notation on the left in (A25) is standard for a non central x?2
distribution with p degrees of freedom and non centrality parameter A». If the

latter is zero, then by (A9), and (A25)
x2(s|p,0) = x2(s|p) = G(s|%, %p) (A26)

i.e., we return to the ordinary x2 distribution for a variate s with p degrees of

freedom. Written out in full, (A25) is:

o+ | s 1 g A
K2(s[p,) = o7 5 L) [ i e e ]] (R27)
i

Stage 4: Moments of x%(x|p,A).
We shall need some of the lower moments of a non centrally distributed x2

variate. Write

't for [ x™2(x|p,2)dx (A28)
o
Hence
oo r‘ =]
=1 1
e Sve A 6?, [ X™ G(x|%,r+sp)dx
r=o . 0)
o +1
s (8 [ ioehie? [ 7% rtmie1
| I +15
= T (r+sp “
oo r +1
s o Ua) () "% r(remp)
i g T(r+p) (%)r+m+%p
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Thus the mth moment of x ~ x2(p,A) is:

-~

c_oom = s ()" r(etmts
by’ =2 €T I NT e it
In particular, we find
igh 1
Wy =2e® I ﬁﬁ?—(ﬂ‘/zp)
r=0 -
& w i
=277 3 (2 r #3 15%%— - }p]
r=0 r=o ’
=2 e'aA [ + 4p] e}il
Thus the mean of x v x2(p,A) is:
Hy = 4P (A30)
Moreover, from (A29):
® T
Lk i
My = 32 4% 5 <2¢%~ (r+145p) (r+sp)
r=0
- 52 LN % (lil)r 71 10241
= 24 @ g i~ [r? & r(ptl) + Lp2ep]
. !

~d
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This requires us to sum series of the form:

LRI R
fn(X) = Z_ per r
r=0
This may be done as follows:
Gt fx) ' e r-1 n o r-1 ® r .
Now ’“{h(__: % ——5?1—-jl- L %?:T" r" z éT(r+1)
r=o r=1 r=o
o rn : .
=r %4z Meord . Ne. = ",(”'})é- (“33‘“&
r=o " j=o J J e
n
=y NG T i)
j=o0 J J
il 6%,
df_(x) n-1 i ;
Sy jil Cj fj(x) + fo(x) + fn(x) y n=2,3, (A31)

This provides a differential equation for fn(x) in terms of the lower order

functions fo(x), f](x), LA &

n-1

for n = 2, 3, ... since we know that
fo(x)=2
B=0)
and that
f](x) = %
1

(x).

The chain of equations (A31) can be solved
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Thus we can solve (A31) for the case n = 2,

dfz(x) b

dx C

;B (0 + £ () F,(x) = F,y(x) + (2x+1)e”

subject to the initial condition
fz(o) = (e

We see that the general solution is:

g Tt
f,(x) = f,(o0)e +({ [(2t+1)e"]e”" - dt

and so
fz(x) = (x+x2)e®
Returning to “é we find:
uj = zye“%*.[fz(zx> + (pH1)F () + (5p?45p) £ ()]

SO

up = A2 + (pt2) (214p) (A32)

The variance of x v x2(p,A) is

o I 89

b B A o
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which comes out to be

My =Y+ 2p (A33)

Higher moments of x ~ x2(p,A) can be found similarly, using (A31) with (A29).

4. Non Central x2 Distributions for ||y||%c? ggg_||§éjlz/02.

We consider first the simpler case, namely that of y. From (4.5), and (A1)

it follows at once that y ~ Nn(§§, Ozln)- Thus each component yj of y has the

property yj o N(uj,oz) where ng is the jth component of Xg, i.e., uy = E:]xjksk’
i=1, ..., n. These yj are independently distributed, and so by (A25),
[y[1?/0% ~ x2(n,x) (A34)
with A = u2/02, u2 = u% +.4.+ u%. Here A is the signal to noise ratio.
We will next show that
|1%8112/62 ~ x2(p,2) (A35)

This result is plausible because, in view of the diagram in §6, ﬁ_é, even though
it is a vector of n components, moves only in the subspace Ep spanned by the p
columns of X. The main goal of the following argument will be to find a
p-component vector which is known to always have the same length as }»éAand whose

components are independent gaussian variates with mean M3 and variance oZ2.
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We may use for this purpose the basis B of En constructed in §2 of this
appendix. The components of ﬁ_é_in this frame are reckoned by (recalling (4.7)):

BIX & ggx

o>

B'(x8) = i
b Bap® B] L %n-p)xn

Hence

[1Xe112 = [187(xe) 12 = |[BoXel|2 (A36)

and similarly we can Show:

|1x8]12 = [1B"(x8)[]2 =

|
jos)

BXe| 12 (A37)

Now, from (4.4) we find

-

W
—
|><
'CE
~—
I
w
—
>
™
-
+
ee)
Iyl

<
l
<7

—
><

N
+
(oo}

Iyl

From (A13), we know that

Hence

T 2 T :
B (X N (B! (Xg), o2 A38
_p\_g)«' pLﬁ(_g) 021 ) (A38)

21
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By this and (A25)

H_B;@e_m; eIy

where

i
n= 1B (8)|12/0% = ||X8]2/02

the last step, from (A37).

By (A36) we know that ||Xg||2 and IIQLX;llé are distributed identically. Hence,

| |X8] [2/02 ~ x2(p,7)

with A = ||[X8]|?/0%, as was to be shown.

5. Independence of ||X8||2/o and |Ign_p||2

(A39)

We now make the observation that §>é>and Epep I¥E independent variates.

This is fairly clear from the linear regression diagram in §6.

resolved into the independent variates £y Enop

Since ¢ is

» the twitter of Xﬁ

Ap + ¢

P

is due to gp only. However, this may also be established formally by using the

basis B of En introduced in 52. Starting with the representation (4.2) of y; and

recalling the definitions of & , & in §2,
=P NEP

$GL4-é014
<
i
2y
)
™ *
+

(via (4.4))
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From this we read:
BT(X8) ~ N_(BIXg, 02I.) (A40)
=p) e o gt b
Ll s R T g R AR (A41)
n-p'=n-p s ey

and since, as seen in (A11), (A13), (A14), §p, gﬂ_p are independent, the result
follows. An immediate corollary of this is that ||§éj|2/02 and ||§ﬂ_pl|2/02 are

independent (functions of independent variates are themselves independent).

6. x2 Distributions for ||8||2/02, ||B-8]|2/02

From (4.15), we can think of é_as g that has been linearly perturbed by e:

and so we suspect that B will be normally distributed with mean R. To find its
covariance matrix we use the
Theorem.* Let u Nn(g,ﬁ), i.e., let u be an n dinensional
gaussian variate with mean u and covariance £. Define a p dimensional
variate v = C u by means of a pxn matrix transformation C. Then
v N (C, Cz e,

To apply this theorem we return to (4.5) and (A1) and note that y ~ Nn(ﬁg) ozlﬂ).

Thus p = X g and I = ozlﬂ, for y = u. Then from (3.8) we have the requisite form
of C = (XTK)_]KT. By the theorem, v = é_has mean Cy = (XTX)-]XT(E_) = B, and
covariance Q_Q_QT = (KTXY] 1k 2ln) l_(_T_)—] - GZ(KTX)—] Hence

* see, e.g. (Rao, 1973, pp 522).
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g N (8 2 (X' (A42)

From this we see that for a given data matrix X, the components of E.and_é—g are
generally correlated. In order to apply x? statistics, e.g., we would adapt

X so that XTX = Lp (cf (5.2)). Then* by (A25),

LLaldado? & <2dpaad) e A = 4 8ll2/e? (A43)
or ' XX = 1
_ = -p
| 18-8]12/0% ~ x?(p) : (A44)
- The [1-Distribution

We now consider the derivation of the pdf underlying the canonic skill Q
and ineptness I (cf §7 of the main text). We will pose at the outset a slightly
more general problem and then reduce it to the Q and I cases: /ic¢tL X1 Xo be Lwo
independent variates such that Xy xz(k1, A]) and Xo Xz(kz, AZ). It is
required Lo jlad the pdf of X]/XZ'

The derivation requires the following preliminary observations on transforma-
tions of random variables. Suppose Xps X, are two random variables with joint

pdf p(x], XZ)' We wish to make a change of variables from X1 Xo to Yis Yoo where
X1 = flyys vy)

Xo = 9(yy> ¥5)

* The A in (A43) issimply defined to be ||8||?/0? for the present application
of (A25). However, see the discussion of the quantity A = ||Xg||2/02 when

X% ='1. (cf (9.58)). 'In that setting, A= A. Recall also (5.20).

p
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To see how the differentia] dx]dx2 transforms, we compute the differentials
dx] = f1 dy1 + f2 dy2
dx

2 Sy I 19 W

where fi and g; are derivatives of f with respect to Y- Then by the calculus of

exterior differential forms (or equivalently, Jacobian theory of change of variables):
dx]dx2 = (f]dy] + fzdyz) (g]dy1 + gzdyz)

and this is reduced using (dyj)2 =.0, (dyidyj) = —(dyjdyi), i# .

The element of area dx]dx2 thus transforms as
dx]dx2 = (f192 - fzg])dy]dy2

The quantity in parentheses is the Jacobian of the transformation. Hence the

related probability elements are
P(xq5%y)dx dx, = p(Flyqsy,)s 9lyysy,)) (F9, - Fof;)dy,dy,
= a(yy,y,)dydy,
Where g is defined in context, i.e.,

alyqs¥,) = P(flyy5¥,) 5 9lyysy,)) (f9, - f,9;) (A45)
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Returning to the problem of the distribution of x]/x2 = Yy, we make the

change of variables
xp = Flysy,) = vy,
X, = 9(y1s¥,) = ¥,

so that the Jacobian is 7

and from (A45):

q(yyaY,) = P(YYos ¥olys -
Since Xps X, are independent, p(x],xz) = p1(x])p2(x2), and so
alyysy,) = Py y,)p,(¥5)y,

We can now drop the subscript on 2 and revert from Yo to Xy The joint pdf

aly, x2) for x]/x2 = y and X5 is then

P1(¥%5)P5(%5)%, (A46)

Now p; = xz(k],k]), P, = xz(kz,xz), by hypothesis. The pdf for y is obtained
by integrating (A46) over the range of Xo, namely (0,). Hence from (A46) and
(A25):
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o0

g Py (¥%,)p,(x5) %, dx,

H(ylk] sk29>\] ,>‘2)

(o]

g Xz(ylek]ax1)X2(X2lk2,A2)X2 dX2

r S
(A,) = = () (ay) w
= e 1.2 2 % T} S% . f G(yx2|%,r+gk])G(x2\2,8+%k2)xz dxz
r=0 s=0 0
L |
J
Here, using (A6):
s (1 )Y‘+12k] _12yx2 ( )r+ zk]_-] : )S+12k2 _12X2 S+12 ;
J = AL e yX . 2 — e % X
o rlredk,) : (s +sk,) : ;
- Gistie(lky) . rHEK o (THy)x,  rsH(k+k,)-]
T G ikt Y 1 W YD TRS Y o 2 £ 1.2 dx.,
e ol 0 : g
(k) s+
Using the known gamma function integral
> _~ax_n I'(n+1)
[ e “xdx= Gy

with-a = L{1+y), n = + 5 + %(k +k2)—1, we find

1
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yegdtk. #k rigk, -1 F{res¥a(k +k2))

)
g = ) o . +1(k]+k) +s+,(k+k, )
4 i b ¥ S+/é r+S+-5
[ r+gk])r(s+zk2) (L) 2 (1+y) a2
F+5k]-]
I"(Y‘+S+!‘3(k]+k2)) y
Vi e R T e T R

In this way we come to the pdf for x]/x2 = Yy, where Xy X, are independent non

central x? variates, Xy xz(k],A]), Xy xz(kz,xz):

By oo o)
Sa(a4n,) @ e (50)(50,)° Tk k) Ak o
= g b L . . e (k a ) ; (A47)
r=0 S=0 r! s! F(r+gk])p(s+%k2) (]+y) 2\RyTKy
O-\yt'u:

A. Generalization of H

We can generalize (A47) to account for ratios of the form y = x]/x2 =
c]g]/czgz, i.e., where numerator and denominator are independent variates {], fys

multiplied by constants s S5 and where X ﬂixz(ki,xi), i=1,2. Thus let

y = (C]/CZ) (51/62) = Yne
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Then in (A47)

H(y]k1,k2,A1,A2)dy = H(Ynlk],kz,xl,xz)ydn
write

Hf(nlk],kz,A],Az,y) for H(yn|k],k2,x],A2)y (A47a)

This is the required new pdf for the ratio n = &]/LZ, where ¢, = X]/C], Lo = XZ/CZ
and Xy v xz(k],x]), Xo xz(kz,xz). That is, H'(n|k],k2,A],A2,y) gives the pdf

of 51/52 where the numerator and denominator each differ by a fixed factor from a
pure x2 variate. This new pdf H' is found from (A47) by performing on H the
indicated operations on the right in (A47a). An example of the use of (Ad47a) is

given in (12.2).

s al |2 2
B. The pdf for Q = | [Xe] |2/ le,_p!|
As a special case of (A47), we have from (A35) and (A18), and the fact that

| |X8]|? and ||§n_p||2 are independent (cf §5, Appendix A), i.e., since

|1X8]|2/02 ~ x2(ps2)

X-' =
Xy = |lep_pl12/0% ~ x?(n-p.0)
we can set
Ky = P> ky = n-p, &y = = LI X2 0e? s Ay =0

and find:
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o r +5p-1
P (Xlnqp,A) — e'%x 5 (%A) F(r+%n) . Xr Zp - (A48)
Q r=o r!  r(rep)r(s(n-p))  (1+x)"T"

0<X<e, n>p>Il

By virtue of the connection between Q and C in §7, i.e., Q = C-1, the pdf
for coskill C follcws at once from A(48) by replacing 'x' by 'x-1' on the right
side and 'PQ' hy 'PC' on the left. The range of C is (1,«). PQ is also known
as the 'non central f' distribution (Rao, 1973, p216). The signal to noise ratio

A (as in (A39)) is also known as the 'noncentrality parareter' in advanced

statistical theory when no specific physical imagery is available.

- 2 ol I
G The pdf for I = |[e,  II%/]]Xe]|
As a special case of (A47), we have from (A35) and (A18) and the fact that

||Xé||2 and ||gﬂ_p||2 are independent (cf §5, Appendix A), i.e., since

[ ~ x%(n-p,0)

X Mo, ol

Xy, = |1X8] |2/02 ~ x2(p,A)
we can set

Ky = n=p, ky = py2g =0, Ay =2 = ||X8]|%/0?,
and find

xﬂ(n‘P)‘]

B > (Jé/\lq . L(stn)
' x)s+%n

PI(xln,p,A) = e (A49)

0<x<w, n>p > 1
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By virtue of the connection between I and U in §7, i.e., I = U-1, the pdf
for unskill U follows at once from (A49) by replacing 'x' by 'x-1' on the right
side and 'pI' by 'PU' on the left. The range of U is (1,»).
The essential difference in the distributions for Q and I is in the exponent
of x: there is no summation dummy s in the exponent of x in (A49). The H-distribution
appears to have been first studied in (Tang, 1938) and (Price, 1964); cf also
(Kendall and Stuart, vol 2, 1973, p262).

(oge The J-Distribution

The pdf for classic skill S may be obtained from those of ||5éj|2 and ||gﬂ_p|l2
by observing that ||y||? = ||5éj|2 . ||Eﬂ—p1|2 (cf (6.1)). 1In §5 of this Appendix
the independence of the summands was established and we know that
x| = |1%8]|2/02 ~ x2(p,A) and Xp = ||§ﬂ_p||2/o2 ~ x2(p,0). It remains then to
deduce the pdf for y = x]/(x]+x2).
We will derive the general pdf for y = x]/(x]+x2) where the independent

: 2 g 1
variates X1sX, are such that Xy VX (k],x]), Xo = X (kz,xz). Following the

2
transformation procedure in §7 above, let

X] = f(ylsyz) R g

Xo = 9(yqs¥5) = ¥,

The first transformation is motivated by the defining relation y = x]/(x]+x2) solvead

for X and relabeling X, as 'y2'. The Jacobian of the transformation is

Yo

f
(]'.Y])Z

192729 =
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Then

2% y
p(7%§23y2)~——41———dy]dy2
gt v o

p(x],xz)dx]dx2

i
1-¥

42
)pz(xz) E;j;;édy dxz

Py (

where we have used the independence of X1s Xo» and reset y = 2 and Xo = Yoo The

required pdf for y is then found using p, = xz(k1, ]), Py = x*(ky2,) with (A25):

. e A
J(Ylk]skzax]axz) = f p](T:y) pz(xz) 9 dX2
(1-y)
L) o o= () )0 ® X
Db T ol o r.] -7595- ] [I G(l_zla, r+%k])G(x2|%,s+%k2)x2dx2]-——lﬂ——
r=0 S=65 11 : 0 y 4 (1-y)?
| |
K
Here, using (A6):
) yx e 1
o r‘+32k] _é[__z] yx r+!.2k] 1 1 s+‘2k2 . s
K=/ (a) e 1Y [ A e &k Xo . Xodx,
0 1,,(r‘+1/2k‘| ) ]‘y iy S+/2k2
; r+s+%(k]+k2) r+%k]—1 ©  =3X E—l—] r+s+;(k,+k,)-1
S (%) e[ . [ ag il L
= ]_y e 2 2
F(r+‘/2k.| )r( S+1§k2) 0

The gamma function integral in §7 of the Appendix can be used here with

a = 1/2(1-y), m = r+s+,(k, +k

1 2)—1. Thus



§A8

r(r+s+is(k,+k,))

1

J(ylk]sk23x~|a)‘2) =

& S
: -‘/.o.(x1+A2)°; : () C22y)
5 ¥FQ. S0 e .
o<y<l

F(r+%k])r(s+%kz)

y

r+sk

1

N

(1-y)

stk

2

=1

which is the pdf for

are independent.

A. The pdf for S = ||Xe||2/]ly||?

As a special case of (A50) we have

x; v 8112707 v 52 (pon)

v e

X2 -

and can set

k]:p,kzz

and find

_pl 12707 ~ x2(n=p,0)

= 2 2
y x]/(x]+x2) where Xy v X (k],A]), Xp " X (kz,xz) and Xy 5%y

33

(A50)
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_ oo ()" r(ren) r+ip-T1 1 yis(n-p)-1
el S e T T MielEmen® | 9N fl

O0<x<1, n>p>1

By virtue of the connection between R and S in §7 of the main text, i.e., S = 1-R,

the pdf for residual unskill R follows at once from (A51) by replacing 'x' by '1-x'

on the right side and 'PS' by 'PR' on the left. The range of R is (0,1). PS is

also known as the 'non-central beta' distribution (Rao, 1973, p217).

9. Calculation of the Moments of the H and J Distributions

The mth raw moment of y ~ H(k1,k2,A1,A2) is found from (A47) via

W L
e = [y ROy kg sko a0, )dy
0

This requires the evaluation of

sk =1 I (r+sk +m) T (s+5k -m)
[ Y 1 dy = ; :
o (1ey) Pk thy) rires+(kytky))

using a variation of the beta function integrand. Hence in general
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As special cases of this,

: bk g 0N LA €Y ) e
e‘lé()\]+)‘2) 3 ( 2>\'l) (12)\2) (2Y‘+k] )

g A g 3
4t o oS 3 e (25+k,-2) (A52)
r=0 s=o0 2
HH,) = = (134) (19,)° (2r+kg#2) (2rekg) Vi
r=o0 s=0 = 4 (25+k2-1) (25+k2-2)

As further special cases, we have

A. First Moment of Q
In (A53) for Q= ||X8]|2/]]e ||2, we set ky=p, k,=n-p, A;=r= | |X8||%/0? ,
n-p
A2=0, and find
= W (l/x)r [2r+p ]
T PO o Ry
1 =408 n-p-2]
=1 o7 [2F(30) + p £ ()] (cf. (A31)
n-p-2 142 P Tol '
el =B\ o1y )e 2t 3\
o (200 )e™ * p 8 ]
whence
i g AP =
B i (=ug) (AS55)

This exists when n-p>2.



36 5A9

B Second Moment of Q

In (A54) we make the same substitutions leading to (A55), and find

_1/2)\

o= (n—p-2§(n-p-4)

r

) (2r4pe2) (2r+p)

—
N

2
=0,

since

(2r+p+2) (2r+p) = 4r2 + 4r(p+l) + (p?+2p)
we can write

-1

Kb = Taop=2)(npay [4T209) + 4(p+1IF () + (p242p)F ()]

using the functions fn(x) defined in (A31). This may be reduced to

2
fpfi) A (p+2) (22 +p) (A56)
[n-p-2] [n-p-4]
This exists when n-p>4.
GF Variance of Q
In general the variance is given by
p = Uy Ui (A57)

Using (A55), (A56) in this we have, on reduction,
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2[22 + (n-2)(2x+p)]

u2 = (—:.Ua) (A58)
[n-p-2]2[n-p-4]
This exists when n-p>4.
D. First and Second Moments of I
From (A53) for I = llgﬂ_p||2/||§éj\2, we set
k] Sans Pl k2 = P >\] w108 >‘2 7 ll&llzlcz
and find
' ECR I M. A59)
(IJI =) ] = (n-p)e Z_ S1 2s+p-2 (
S=0
and from (A54):
TN (1/)\)S 1
uy = (n-p)ln-p+2]e ** ¢ =FH— - (A60)
s=o > [2s+p-2][2s+p-4]

My is best found numerically in this case, using (A57), (A59), (A60). The moments
“i’ ué exist if p>2, p>4, respectively.

The mth raw moment of y ~ J(k], k2, Ay AZ) is found from (A50) via

1

L m
um X ({ y ‘J(.YIk‘Iakza)\] ’)\2) dy
This requires the evaluation of
1 r+m+ik, -1 S+ik,-1 T (r+m+isk, )T (s+sk,)
1 2 1 2
[y (1-y) dy =

0 F(r‘+s+m+1/2(k]+k2))

3%
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using the beta function. Hence in general

)* T(ramtiaky) T(resHalko+ky))

u'=e I L —f , m=0,1,2...
F=g S50 ¥ r(rek,)  rlr+stmes(k,+k,))
s special cases of this
s TR TAGE R
i e_!Z(A'l-H\Z) y : (12>\-|) (12)\2) ; (2Y‘+k-|)
| |
1 r=o s=o - b (2r+2$+k]+k2)
H(A,) = = () 0,)°  (2re24k) (2rk;)
U, = e e . :
& s i i L LN L (2r+2s+2+k, +k,) (2r+2s+k, +k
F¥s First Moment of S

In (A62) for S = |[X8][2/]|y||2, we set
k] = p, k2 =n-p, A; = A= | |X8]||2/02, Ay = 0

and find

F. Second Moment of S

In (A63) we make the same substitutions leading to (A64), and find

(A61)

(A62)

(A63)

(A64)
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2r+2+p) (2r+p)
rT " (2r¥2#n)(2r+n (262

The variance of S is best found numerically from (A57), (A64), (A65) for any given

set of n, p, A values. Some approximations may be possible, as we show below.

G. First Moment of S for Small Signal to Noise Ratio A

Expanding the exponential series in (A64) and retaining only first powers

of x, we find
(ng =) (5=) w2 (-5 B+ 5 (B (A64a)

As 0, ui+ p/n, as may also be seen from (A64). If we write 'SO' for p/n, and n

is large compared to 2, then (A64a) becomes
+ 322 (1S ) (A64b)
This reduces to the exact classic skill's mean for the case of zero signal to noise:

o™ S0 = p/n . (A64c)

H. The Second Moment of S for Small Signal to Noise Ratio A

From (A65), expanding the exponential, and retaining only the first power of A,

vy * () [ e R (R632)
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I. Variance of S for Small Signal to Noise Ratio A

Since

T g o AR
Og ]J2 U-l s

We have from (A64a) and (A65a), on retaining only the first power of A,

Z(H-Q; [ (n+np+
9% T n(n+2 I:n -2 n(n+4 ]

N
1K

2(1-S (1+p+S )
—_0)[50 -2 —“*iwo ] (A65b)

n+2

This reduces to exactly to the classic skill's variance for the case of zero signal

to noise:

,  2(1-5.)8, 2(1-p/n)(p/n)

% T Tn¥2 T T n#2 (A65c)
10. Classic Hindcast Skill and the Multiple Correlation Coefficient

There is a general intuitive connection between the ideas of linear regression
and multiple correlation that would lead one to suspect a correspondingly general
formal connection between all the salient parameters in each of these two domains.

In this section we shall show the exact formal correspondence between classic
skill S and the square R? of the multiple correlation coefficient, and also the
explicit connection between the signal to noise ratio A and the population
correlation coefficient R?.

T ,repare for the demonstration we rewrite (A51) as follows:
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Ps(xln,p,x) =

|z . (A66)

In (Kendall and Stuart, vol 2, 1972, p358), given as an exercise, is the following
form for the pdf of the square of the multiple correlation coefficient (using their
notation and taking the liberty to make some rearrangements and to open up their

beta function, so as to facilitate the comparison):

. 'T : dR2 (A67)
4

Ovserve that certain terms can be cancelled in (A66), such as r'(%(n-1)) and
r(%(p-1)). These may also be cancelled in (A67). They were put in by Kendall
and Stuart ('K and S') to 'pretty up' the results, and we followed suit. When
a comparison between (A66), (A67) is made in their simplified forms, the following

correspondences are evident:

41
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Multiple Correlation and Classic Skill

K and S Here
n-1 n
p-1 P
R2 X

(n-p)R2 A

In this way we discover the connection between our signal to noise ratio A and the

population correlation coefficient B?:

|1X8]|2/02 = A = (n-p)R2 . (A68)
There is an important proviso regarding (A68), namely that R? by construction is
always bound by O E_B? < 1, whereas X clearly can exceed 1, as a perusal of the

linear regression diagram in §6 of the main text shows. We can fix ||X8]|

and imagine the vector e to have any o2, large or small. In terms of our dynamical
studies in §2 (particularly recall (2.5)), the signal ||Xg||2 of the retained
drivers and the noise o2 (of the discarded drivers) may be independently chosen.

It is particularly this fact and to a somewhat lesser extent the specialized cast
of multiple correlation theory in the domain of statistics that suggested
retaining our independent development of the theory of A. Still another corres-

pondence can be set up using a result in (Rao, 1973, p600).
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Appendix B, Finite-term Formulas for Cumulative Probabilities

The numerical determination of the o(}), o(1-%a) significance levels for
a given performance skill Q, S, or I, (as in §11) is facilitated by the formulas
presented below. The formulas are based on the fact that when n-p or p (as the
case may be) are even integers, the indefinite integrals of the densities
PQ’ PS’ PI presented in §8 can be expressed as the results of a finite number of
elementary operations. A computer program based on these finite-term formulas is
much faster than one that integrates the densities using, say, Simpson's rule.
The tables below are based on these finite-term integrals. It is found that
tabulations of o(05), o(95) for n up to about 50 can be handled this way before
numerical problems of accuracy arise. Beyond n = 50, the determination of
o(%a), o(1-%a) for a = .10 (say) must be done with Simpson's rule and double
precision, or some other integration procedure with controllable accuracy, such

as Runge-Kutta schemes.

1. Formulas for Canonic Skill Q

Starting with (8.1) we integrate PQ(x|n,p,A) from x = 0 to some arbitrary

value y. This requires the evaluation of the x-dependent part of PQ in the form:

|
(@
x

H.(y[p,2) =

Make the substitution of variables: 1 + x = u?, then dx = 2u du, and so

Xr+%p-] h (uz_])r+%p-]_

When x = 0, u=1. So
S0 y (U _])%P+r-] du
H.{ylp,n) = 2 { yMH2r-1 .

where we leave the upper limit u arbitrary, say of value y.
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Let p/2 be an integer. Then with

(SLF . s ;
[ -,
Lo+ . :
(u2-1 )1/2P+Y"] zpzr } (%pfr‘]) (uz)J (-1 )l/zp+r‘-1'J
J=o ¢
So
1/Zp-"r-.I 3 1 . j+]'(1/2n+r)
_ ptr-1y o qyptr-j-1 [(1+y) -1]
Hr(.Y|psn) §=0 ( J ) ( ]) j+‘|_(1/2n+r) (B])
Therefore
y a3 2" o lia) ()"
f PQ(xln,p,A)dx =6 z . . Hr(Y|D,n) (B2)
0 r=o T(r+)r(%(n-p)) !
%p an integer, n-p>1
o A
ol = o n-p>2 (B3)
n-p-

In applications of (B2), one should keep in mind the important option of using the
representation A = px for the signal to noise ratio (cf §9). In our preliminary
study of (B2), summarized in the tables below, p, n, A were treated as independent
variables. In practical applications, it is suggested that the representation

A = px be used since, as explained in §9, A is then more or less independent of p,

and so n, p, A are independent parameters. These comments of course hold for the

formulas below.
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2y Formulas for Ineptness I

Starting with (8.4), we integrate PI(x|n,p,A) from x = 0 to some arbitrary

value y. This requires the evaluation of the x-dependent part of PI in the form:

y J(n-p)-1
J ,n) = = —.q
~ylp,n) g T X
B(n-p)=1 L, _ y_ W J+1-(34ptr) _
i B R N O e L

It is seen that this differs from Hr(y|p,x) only by the interchange of (n-p), p,
and the absences of certain r presences in (B4). To evaluate (B4) we used the

assumption that n-p is an integer. Hence

; ; Bt
y =% ©  T(r+hn)
[ PI(x|n,p,A)dx =g 5 . . Jr(¥|P,n) (BS)
0 r=o r(r+p)r(%(n-p)) r!
(n-p) a positive integer,
el do eyl 9
I (n-p)e i:o rl (p+2r-2) ° @ (B6)
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8. Formulas for Classic Skill S

Starting with (8.7), we integrate PS (x|n,p,A) from x = 0 to some arbitrary

value y. This requires the evaluation of the x-dependent part of PS in the form

(with the assurption that n-p is even):

Lo(ylpsn) = [ x"F2=T (s yka(n-p)-1 dx

_nep %(n-p)=1 L. L i Jabtrtj
= (:1)1P2 ; Gai digh BT I bt (87)
j=0 J 2Pp*r+]
Hence
jy “8\ = I(r+gn) (32)"
o Ps(xIn,pa)dx = e~ 5 . * L.(y[n,p) (B8)
r=0 T(r+p)r(%(n-p)) r!
%(n-p) a positive integer
Lo ()" pear
5 e z . ] (B9)
r=0 r! n+2r
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